論文の概要: When Less is More: Achieving Faster Convergence in Distributed Edge Machine Learning
- arxiv url: http://arxiv.org/abs/2410.20495v1
- Date: Sun, 27 Oct 2024 16:17:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:21.614956
- Title: When Less is More: Achieving Faster Convergence in Distributed Edge Machine Learning
- Title(参考訳): より少ない場合:分散エッジ機械学習におけるより高速な収束を実現する
- Authors: Advik Raj Basani, Siddharth Chaitra Vivek, Advaith Krishna, Arnab K. Paul,
- Abstract要約: リソース制約のあるエッジデバイス上での分散機械学習(DML)は、現実世界のアプリケーションにとって大きな可能性を秘めている。
本稿では,エッジデバイス上での効率的なDMLのための新しい確率的フレームワークであるHermesを提案する。
実世界の異種資源制約環境に対する評価は,Hermesが最先端の手法に比べて高速な収束を実現することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Distributed Machine Learning (DML) on resource-constrained edge devices holds immense potential for real-world applications. However, achieving fast convergence in DML in these heterogeneous environments remains a significant challenge. Traditional frameworks like Bulk Synchronous Parallel and Asynchronous Stochastic Parallel rely on frequent, small updates that incur substantial communication overhead and hinder convergence speed. Furthermore, these frameworks often employ static dataset sizes, neglecting the heterogeneity of edge devices and potentially leading to straggler nodes that slow down the entire training process. The straggler nodes, i.e., edge devices that take significantly longer to process their assigned data chunk, hinder the overall training speed. To address these limitations, this paper proposes Hermes, a novel probabilistic framework for efficient DML on edge devices. This framework leverages a dynamic threshold based on recent test loss behavior to identify statistically significant improvements in the model's generalization capability, hence transmitting updates only when major improvements are detected, thereby significantly reducing communication overhead. Additionally, Hermes employs dynamic dataset allocation to optimize resource utilization and prevents performance degradation caused by straggler nodes. Our evaluations on a real-world heterogeneous resource-constrained environment demonstrate that Hermes achieves faster convergence compared to state-of-the-art methods, resulting in a remarkable $13.22$x reduction in training time and a $62.1\%$ decrease in communication overhead.
- Abstract(参考訳): リソース制約のあるエッジデバイス上での分散機械学習(DML)は、現実世界のアプリケーションにとって大きな可能性を秘めている。
しかし、これらの異種環境におけるDMLの高速収束は重要な課題である。
Bulk Synchronous ParallelやAsynchronous Stochastic Parallelといった従来のフレームワークは、通信オーバーヘッドを大幅に増加させ、収束速度を阻害する頻繁で小さな更新に依存している。
さらに、これらのフレームワークは、しばしば静的なデータセットサイズを使用し、エッジデバイスの均一性を無視し、トレーニングプロセス全体を遅くするストラグラーノードにつながる可能性がある。
ストラグラーノード、すなわち、割り当てられたデータチャンクを処理するのにかなり時間がかかるエッジデバイスは、全体的なトレーニング速度を妨げる。
本稿では,エッジデバイス上で効率的なDMLを実現するための新しい確率的フレームワークであるHermesを提案する。
このフレームワークは、最近のテスト損失行動に基づく動的しきい値を利用して、モデルの一般化能力の統計的に重要な改善を識別する。
さらにHermesは、動的データセットアロケーションを使用してリソース利用を最適化し、ストラグラーノードによるパフォーマンス劣化を防止する。
実世界の異種資源制約環境における評価から,Hermesは最先端の手法に比べて高速な収束を実現し,トレーニング時間の13.22$x削減,通信オーバーヘッドの62.1$%削減を実現した。
関連論文リスト
- SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Robust Fully-Asynchronous Methods for Distributed Training over General Architecture [11.480605289411807]
分散機械学習問題における完全な同期は、レイテンシ、パッケージの損失、ストラグラーの存在のため、非効率であり、不可能である。
本稿では,R-FAST (Fully-Asynchronous Gradient Tracking Method) を提案する。
論文 参考訳(メタデータ) (2023-07-21T14:36:40Z) - FLARE: Detection and Mitigation of Concept Drift for Federated Learning
based IoT Deployments [2.7776688429637466]
FLAREは、トレーニングデータを条件付きで転送し、エッジとセンサのエンドポイント間でモデルをデプロイする、軽量なデュアルスケジューリングFLフレームワークである。
固定間隔スケジューリング法と比較して,FLAREはエッジノードとセンサノード間で交換されるデータ量を大幅に削減できることを示す。
少なくとも16倍のレイテンシで、コンセプトドリフトを反応的に検出できる。
論文 参考訳(メタデータ) (2023-05-15T10:09:07Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
機械学習(ML)は、巨大なIoT(Internet of Things)ベースのインテリジェントでユビキタスなコンピューティングのビッグデータ駆動モデリングと分析のための重要なテクニックである。
急成長するアプリケーションやデータ量にとって、分散学習は有望な新興パラダイムである。
本稿では,多くのユーザデバイスに分散した分散システム上でMLモデルをトレーニングする問題について検討する。
論文 参考訳(メタデータ) (2022-02-07T15:04:15Z) - Asynchronous Semi-Decentralized Federated Edge Learning for
Heterogeneous Clients [3.983055670167878]
フェデレーションエッジ学習(FEEL)は、モバイルエッジネットワークのプライバシ保護のための分散学習フレームワークとして注目されている。
本研究では,複数のエッジサーバが協調して,エッジデバイスからのより多くのデータをトレーニング中に組み込む,新たな半分散FEEL(SD-FEEL)アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2021-12-09T07:39:31Z) - Architecture Aware Latency Constrained Sparse Neural Networks [35.50683537052815]
本稿では,CNNモデルの作成と高速化を目的として,遅延制約付きスパースフレームワークを設計する。
また,効率的な計算のための新しいスパース畳み込みアルゴリズムを提案する。
我々のシステム・アルゴリズムの共同設計フレームワークは、リソース制約のあるモバイルデバイス上でのネットワークの精度とレイテンシのフロンティアをはるかに向上させることができる。
論文 参考訳(メタデータ) (2021-09-01T03:41:31Z) - Distributed stochastic optimization with large delays [59.95552973784946]
大規模最適化問題を解決する最も広く使われている手法の1つは、分散非同期勾配勾配(DASGD)である。
DASGDは同じ遅延仮定の下で大域的最適実装モデルに収束することを示す。
論文 参考訳(メタデータ) (2021-07-06T21:59:49Z) - Smoothness Matrices Beat Smoothness Constants: Better Communication
Compression Techniques for Distributed Optimization [10.592277756185046]
大規模分散最適化は、教師付き機械学習モデルのトレーニングのデフォルトツールとなっている。
我々は,局所的損失に伴う滑らかさ行列を最大限に活用できる新しいコミュニケーションスパーシフィケーション戦略を提案する。
論文 参考訳(メタデータ) (2021-02-14T20:55:02Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
既存のプルーニング技術に共通する制限は、プルーニングの前に少なくとも1回はネットワークの事前トレーニングが必要であることである。
本稿では,ターゲットデータセットの関数としてプルーニングマスクを生成することにより,大規模な参照データセット上で事前訓練されたネットワークをタスク適応的にプルークするSTAMPを提案する。
ベンチマークデータセット上での最近の先進的なプルーニング手法に対するSTAMPの有効性を検証する。
論文 参考訳(メタデータ) (2020-06-22T10:57:43Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
モバイルエッジデバイスの限られたストレージとコンピューティング能力を満たすために、ディープニューラルネットワーク(DNN)の軽量プルーニングが提案されている。
従来のプルーニング手法は主に、ユーザデータのプライバシを考慮せずに、モデルのサイズを減らしたり、パフォーマンスを向上させることに重点を置いていた。
プライベートトレーニングデータセットを必要としないプライバシ保護指向のプルーニングおよびモバイルアクセラレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-13T23:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。