論文の概要: Deep Reinforcement Learning Agents for Strategic Production Policies in Microeconomic Market Simulations
- arxiv url: http://arxiv.org/abs/2410.20550v1
- Date: Sun, 27 Oct 2024 18:38:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:15:30.203047
- Title: Deep Reinforcement Learning Agents for Strategic Production Policies in Microeconomic Market Simulations
- Title(参考訳): マイクロ経済市場シミュレーションにおける戦略生産政策のための深層強化学習エージェント
- Authors: Eduardo C. Garrido-Merchán, Maria Coronado-Vaca, Álvaro López-López, Carlos Martinez de Ibarreta,
- Abstract要約: 複数の生産者と競合する市場で効果的な政策を得るためのDRLベースのアプローチを提案する。
我々のフレームワークは、静的およびランダムな戦略を一貫して上回るいくつかのシミュレーションに適応的な生産ポリシーを学習することを可能にする。
その結果,DRLで訓練したエージェントは生産水準を戦略的に調整し,長期利益率を最大化できることがわかった。
- 参考スコア(独自算出の注目度): 1.6499388997661122
- License:
- Abstract: Traditional economic models often rely on fixed assumptions about market dynamics, limiting their ability to capture the complexities and stochastic nature of real-world scenarios. However, reality is more complex and includes noise, making traditional models assumptions not met in the market. In this paper, we explore the application of deep reinforcement learning (DRL) to obtain optimal production strategies in microeconomic market environments to overcome the limitations of traditional models. Concretely, we propose a DRL-based approach to obtain an effective policy in competitive markets with multiple producers, each optimizing their production decisions in response to fluctuating demand, supply, prices, subsidies, fixed costs, total production curve, elasticities and other effects contaminated by noise. Our framework enables agents to learn adaptive production policies to several simulations that consistently outperform static and random strategies. As the deep neural networks used by the agents are universal approximators of functions, DRL algorithms can represent in the network complex patterns of data learnt by trial and error that explain the market. Through extensive simulations, we demonstrate how DRL can capture the intricate interplay between production costs, market prices, and competitor behavior, providing insights into optimal decision-making in dynamic economic settings. The results show that agents trained with DRL can strategically adjust production levels to maximize long-term profitability, even in the face of volatile market conditions. We believe that the study bridges the gap between theoretical economic modeling and practical market simulation, illustrating the potential of DRL to revolutionize decision-making in market strategies.
- Abstract(参考訳): 伝統的な経済モデルは、しばしば市場のダイナミクスに関する固定された仮定に依存し、現実のシナリオの複雑さと確率的な性質を捉える能力を制限する。
しかし、現実はより複雑でノイズを含んでいるため、従来のモデルは市場では満たされない。
本稿では,マイクロエコノミカル市場環境における生産戦略の最適化に深層強化学習(DRL)を応用し,従来のモデルの限界を克服する方法について検討する。
具体的には、需要変動、供給、価格、補助金、固定コスト、総生産曲線、弾力性、その他騒音によって汚染された影響に応じて生産決定を最適化するDRLベースのアプローチを提案する。
我々のフレームワークは、静的およびランダムな戦略を一貫して上回るいくつかのシミュレーションに適応的な生産ポリシーを学習することを可能にする。
エージェントが使用するディープニューラルネットワークは関数の普遍的な近似器であるため、DRLアルゴリズムは市場を説明する試行錯誤によって学習されたデータのネットワーク複雑なパターンで表現することができる。
広範なシミュレーションを通じて、DRLは生産コスト、市場価格、競争行動の間の複雑な相互作用を捉え、動的経済環境における最適意思決定の洞察を与える。
その結果、DRLで訓練されたエージェントは、不安定な市場条件に直面した場合でも、生産水準を戦略的に調整し、長期的な利益率を最大化できることがわかった。
この研究は、理論的経済モデリングと実践的市場シミュレーションのギャップを埋め、DRLが市場戦略における意思決定に革命をもたらす可能性を示していると信じている。
関連論文リスト
- An Experimental Study of Competitive Market Behavior Through LLMs [0.0]
本研究では,大規模言語モデル(LLM)が市場実験を行う可能性について検討する。
我々は,市場エージェントの行動を制御された実験環境でモデル化し,競争均衡に向けて収束する能力を評価する。
論文 参考訳(メタデータ) (2024-09-12T18:50:13Z) - By Fair Means or Foul: Quantifying Collusion in a Market Simulation with Deep Reinforcement Learning [1.5249435285717095]
本研究は、反復価格競争の実験的なオリゴポリーモデルを用いる。
我々は,エージェントが開発する戦略と価格パターンについて検討し,その結果を導出する可能性がある。
以上の結果から,RLをベースとしたAIエージェントは,超競争的価格帯電を特徴とする癒着状態に収束することが示唆された。
論文 参考訳(メタデータ) (2024-06-04T15:35:08Z) - Simulating the Economic Impact of Rationality through Reinforcement Learning and Agent-Based Modelling [1.7546137756031712]
我々はエージェントベースモデル(ABM)の能力を拡大するためにマルチエージェント強化学習(RL)を活用している。
RLエージェントは、市場競争のレベルと合理性に応じて、利益を最大化するための3つの異なる戦略を自発的に学習することを示します。
また、独立した政策を持つRLエージェントと、相互にコミュニケーションする能力のないエージェントは、自発的に異なる戦略グループに分離することを学び、市場力と全体的な利益を増大させます。
論文 参考訳(メタデータ) (2024-05-03T15:08:25Z) - Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in
High-Frequency Trading: A Comprehensive Exploration [0.0]
強化学習(Reinforcement Learning、RL)は、エージェントが環境と対話することで学習する機械学習の分野である。
本稿では,HFT(High-Frequency Trading)シナリオに適した統計仲裁手法におけるRLの統合について述べる。
広範なシミュレーションやバックテストを通じて、RLはトレーディング戦略の適応性を高めるだけでなく、収益性指標の改善やリスク調整されたリターンの期待も示している。
論文 参考訳(メタデータ) (2023-09-13T06:15:40Z) - Finding Regularized Competitive Equilibria of Heterogeneous Agent
Macroeconomic Models with Reinforcement Learning [151.03738099494765]
労働市場に参入する世帯や企業を無限に数える異種エージェントマクロ経済モデルについて検討する。
本稿では,モデルの正規化競争均衡を求めるデータ駆動強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-24T17:16:27Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
本研究では,エージェント種別のメタゲームに対して,エプシロン・ナッシュ平衡である安定解を求めることができることを示す。
私たちのアプローチはより柔軟で、例えば市場クリア化のような非現実的な仮定は必要ありません。
当社のアプローチは、実際のビジネスサイクルモデル、DGEモデルの代表的なファミリー、100人の労働者消費者、10社の企業、税金と再分配を行う政府で実証しています。
論文 参考訳(メタデータ) (2022-01-03T17:00:17Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Towards Realistic Market Simulations: a Generative Adversarial Networks
Approach [2.381990157809543]
本研究では,実データに基づいて学習したコンディショナル・ジェネレーティブ・アドバイザリアル・ネットワーク(CGAN)に基づくマーケットジェネレータを提案する。
CGANベースの"ワールド"エージェントは、実験エージェントに応答して意味のある順序を生成することができる。
論文 参考訳(メタデータ) (2021-10-25T22:01:07Z) - Building a Foundation for Data-Driven, Interpretable, and Robust Policy
Design using the AI Economist [67.08543240320756]
AIエコノミストフレームワークは,2段階強化学習とデータ駆動型シミュレーションを用いて,効果的な,柔軟な,解釈可能なポリシー設計を可能にする。
RLを用いて訓練されたログリニア政策は、過去の結果と比較して、公衆衛生と経済の両面から社会福祉を著しく改善することがわかった。
論文 参考訳(メタデータ) (2021-08-06T01:30:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。