Encrypted system identification as-a-service via reliable encrypted matrix inversion
- URL: http://arxiv.org/abs/2410.20575v1
- Date: Sun, 27 Oct 2024 20:00:04 GMT
- Title: Encrypted system identification as-a-service via reliable encrypted matrix inversion
- Authors: Janis Adamek, Philipp Binfet, Nils Schlüter, Moritz Schulze Darup,
- Abstract summary: Encrypted computation opens up promising avenues across a plethora of application domains.
In particular, Arithmetic homomorphic encryption is a natural fit for cloud-based computational services.
This paper presents an encrypted system identification service enabled by a reliable encrypted solution to at least squares problems.
- Score: 0.0
- License:
- Abstract: Encrypted computation opens up promising avenues across a plethora of application domains, including machine learning, health-care, finance, and control. Arithmetic homomorphic encryption, in particular, is a natural fit for cloud-based computational services. However, computations are essentially limited to polynomial circuits, while comparisons, transcendental functions, and iterative algorithms are notoriously hard to realize. Against this background, the paper presents an encrypted system identification service enabled by a reliable encrypted solution to least squares problems. More precisely, we devise an iterative algorithm for matrix inversion and present reliable initializations as well as certificates for the achieved accuracy without compromising the privacy of provided I/O-data. The effectiveness of the approach is illustrated with three popular identification tasks.
Related papers
- Lightweight Cryptanalysis of IoT Encryption Algorithms : Is Quota Sampling the Answer? [0.0]
Two well-known lightweight algorithms are SIMON and SIMECK which have been specifically designed for use on resource-constrained IoT devices.
It is necessary to test these algorithms for resilience against differential cryptanalysis attacks.
In this paper, we introduce Versatile Investigative Sampling Technique for Advanced Cryptanalysis.
arXiv Detail & Related papers (2024-04-12T00:08:39Z) - Cryptanalysis and improvement of multimodal data encryption by
machine-learning-based system [0.0]
encryption algorithms to accommodate varied requirements of this field.
Best approach to analyzing an encryption algorithm is to identify a practical and efficient technique to break it.
arXiv Detail & Related papers (2024-02-24T10:02:21Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
We derive a framework to analyze whether a transparent implementation in a computing model is feasible.
Based on previous results, we find that Blum-Shub-Smale Machines have the potential to establish trustworthy solvers for inverse problems.
arXiv Detail & Related papers (2024-01-18T15:32:38Z) - Lightweight Public Key Encryption in Post-Quantum Computing Era [0.0]
Confidentiality in our digital world is based on the security of cryptographic algorithms.
In the course of technological progress with quantum computers, the protective function of common encryption algorithms is threatened.
Our concept describes the transformation of a classical asymmetric encryption method to a modern complexity class.
arXiv Detail & Related papers (2023-11-24T21:06:42Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Encrypted Dynamic Control exploiting Limited Number of Multiplications and a Method using RLWE-based Cryptosystem [0.3749861135832073]
We present a method to encrypt dynamic controllers that can be implemented through most homomorphic encryption schemes.
As a result, the encrypted controller involves only a limited number of homomorphic multiplications on every encrypted data.
We propose a customization of the method for Ring Learning With Errors (RLWE)-based cryptosystems, where a vector of messages can be encrypted into a single ciphertext.
arXiv Detail & Related papers (2023-07-07T08:24:48Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Verifiable Encodings for Secure Homomorphic Analytics [10.402772462535884]
Homomorphic encryption is a promising solution for protecting privacy of cloud-delegated computations on sensitive data.
We propose two error detection encodings and build authenticators that enable practical client-verification of cloud-based homomorphic computations.
We implement our solution in VERITAS, a ready-to-use system for verification of outsourced computations executed over encrypted data.
arXiv Detail & Related papers (2022-07-28T13:22:21Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.