論文の概要: Meta-Learning Approaches for Improving Detection of Unseen Speech Deepfakes
- arxiv url: http://arxiv.org/abs/2410.20578v1
- Date: Sun, 27 Oct 2024 20:14:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:59.982746
- Title: Meta-Learning Approaches for Improving Detection of Unseen Speech Deepfakes
- Title(参考訳): メタラーニングによる未知音声のディープフェイク検出の改善
- Authors: Ivan Kukanov, Janne Laakkonen, Tomi Kinnunen, Ville Hautamäki,
- Abstract要約: 現在の音声ディープフェイク検出手法は、既知の相手に対して良好に機能する。
ソーシャルメディア上でのスピーチのディープフェイクの拡散は、目に見えない攻撃に一般化できるシステムの必要性を浮き彫りにしている。
我々はメタラーニングの観点からこの問題に対処し、非常に少ないサンプルで、目に見えない攻撃に適応するために攻撃不変の機能を学ぶことを目的としている。
- 参考スコア(独自算出の注目度): 9.894633583748895
- License:
- Abstract: Current speech deepfake detection approaches perform satisfactorily against known adversaries; however, generalization to unseen attacks remains an open challenge. The proliferation of speech deepfakes on social media underscores the need for systems that can generalize to unseen attacks not observed during training. We address this problem from the perspective of meta-learning, aiming to learn attack-invariant features to adapt to unseen attacks with very few samples available. This approach is promising since generating of a high-scale training dataset is often expensive or infeasible. Our experiments demonstrated an improvement in the Equal Error Rate (EER) from 21.67% to 10.42% on the InTheWild dataset, using just 96 samples from the unseen dataset. Continuous few-shot adaptation ensures that the system remains up-to-date.
- Abstract(参考訳): 現在の音声ディープフェイク検出手法は、既知の敵に対して良好に機能するが、目に見えない攻撃への一般化は依然として未解決の課題である。
ソーシャルメディア上でのスピーチディープフェイクの拡散は、トレーニング中に観察されない攻撃を一般化できるシステムの必要性を浮き彫りにする。
我々はメタラーニングの観点からこの問題に対処し、非常に少ないサンプルで、目に見えない攻撃に適応するために攻撃不変の機能を学ぶことを目的としている。
このアプローチは、大規模なトレーニングデータセットの生成が高価か不可能であることが多いため、有望である。
InTheWildデータセットでは、EER(Equal Error Rate)が21.67%から10.42%に改善された。
連続的な数発の適応により、システムは最新の状態を維持することができる。
関連論文リスト
- Can We Trust the Unlabeled Target Data? Towards Backdoor Attack and Defense on Model Adaptation [120.42853706967188]
本研究は, よく設計された毒物標的データによるモデル適応に対するバックドア攻撃の可能性を探る。
既存の適応アルゴリズムと組み合わせたMixAdaptというプラグイン・アンド・プレイ方式を提案する。
論文 参考訳(メタデータ) (2024-01-11T16:42:10Z) - Unsupervised Adversarial Detection without Extra Model: Training Loss
Should Change [24.76524262635603]
従来の敵の訓練と教師付き検出へのアプローチは、攻撃型の事前知識とラベル付きトレーニングデータへのアクセスに依存している。
そこで本稿では,敵攻撃の事前知識を必要とせずに,不要な特徴とそれに対応する検出方法を新たに提案する。
提案手法は全攻撃タイプで有効であり, 偽陽性率は特定の攻撃タイプに優れた手法よりさらに優れている。
論文 参考訳(メタデータ) (2023-08-07T01:41:21Z) - When Measures are Unreliable: Imperceptible Adversarial Perturbations
toward Top-$k$ Multi-Label Learning [83.8758881342346]
新しい損失関数は、視覚的および測定的不受容性を両立できる敵の摂動を生成するために考案された。
大規模ベンチマークデータセットを用いた実験により,提案手法が最上位の$kのマルチラベルシステムを攻撃する際の優位性を実証した。
論文 参考訳(メタデータ) (2023-07-27T13:18:47Z) - Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning
Few-Shot Meta-Learners [28.468089304148453]
これにより、システムの学習アルゴリズムを騙すような、衝突する入力セットを作れます。
ホワイトボックス環境では、これらの攻撃は非常に成功しており、ターゲットモデルの予測が偶然よりも悪化する可能性があることを示す。
攻撃による「過度な対応」と、攻撃が生成されたモデルと攻撃が転送されたモデルとのミスマッチという2つの仮説を探索する。
論文 参考訳(メタデータ) (2022-11-23T14:55:44Z) - DAD: Data-free Adversarial Defense at Test Time [21.741026088202126]
ディープモデルは敵の攻撃に非常に敏感である。
プライバシは、トレーニングデータではなく、トレーニングされたモデルのみへのアクセスを制限する、重要な関心事になっている。
我々は,「訓練データと統計値の欠如によるテスト時敵防衛」という全く新しい問題を提案する。
論文 参考訳(メタデータ) (2022-04-04T15:16:13Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Detection and Continual Learning of Novel Face Presentation Attacks [23.13064343026656]
最先端の対偽造防止システムは、トレーニング中に見たことのない新しいタイプの攻撃に対して、依然として脆弱である。
本稿では、深層ニューラルネットワークを用いて、観測された入力データポイントの異常を新しいタイプの攻撃として検出する。
次に、経験的なリプレイを使用してモデルを更新し、過去の学習された攻撃タイプを忘れずに、新しいタイプの攻撃に関する知識を取り入れます。
論文 参考訳(メタデータ) (2021-08-27T01:33:52Z) - Continual Learning for Fake Audio Detection [62.54860236190694]
本論文では,連続学習に基づく手法である忘れずに偽物を検出することで,モデルに新たなスプーフィング攻撃をインクリメンタルに学習させる手法を提案する。
ASVspoof 2019データセットで実験が行われる。
論文 参考訳(メタデータ) (2021-04-15T07:57:05Z) - On the Generalisation Capabilities of Fisher Vector based Face
Presentation Attack Detection [13.93832810177247]
顔提示攻撃検出技術は、既知の提示攻撃機器で評価されたときに良好な検出性能を報告しています。
本研究では,フィッシャーベクトルに基づく特徴空間を,コンパクトな2値化統計画像から計算し,ヒストグラムを用いた。
フリーで利用可能な顔データベースから取られた未知の攻撃に挑戦するために評価されたこの新しい表現は、有望な結果を示している。
論文 参考訳(メタデータ) (2021-03-02T13:49:06Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
異常検出に基づくスプーフ攻撃検出は、顔提示攻撃検出の最近の進歩である。
本稿では,異常検出に基づくスプーフ攻撃検出のためのディープラーニングソリューションを提案する。
提案手法はCNNの表現学習能力の恩恵を受け,fPADタスクの優れた特徴を学習する。
論文 参考訳(メタデータ) (2020-07-11T21:20:55Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
本研究は,ASVシステムに対して,別個の検出ネットワークによる敵攻撃から防御することを提案する。
VGGライクな二分分類検出器を導入し、対向サンプルの検出に有効であることが実証された。
論文 参考訳(メタデータ) (2020-06-11T04:31:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。