Kernel Approximation of Fisher-Rao Gradient Flows
- URL: http://arxiv.org/abs/2410.20622v1
- Date: Sun, 27 Oct 2024 22:52:08 GMT
- Title: Kernel Approximation of Fisher-Rao Gradient Flows
- Authors: Jia-Jie Zhu, Alexander Mielke,
- Abstract summary: We present a rigorous investigation of Fisher-Rao and Wasserstein type gradient flows concerning their gradient structures, flow equations, and their kernel approximations.
Specifically, we focus on the Fisher-Rao geometry and its various kernel-based approximations, developing a principled theoretical framework.
- Score: 52.154685604660465
- License:
- Abstract: The purpose of this paper is to answer a few open questions in the interface of kernel methods and PDE gradient flows. Motivated by recent advances in machine learning, particularly in generative modeling and sampling, we present a rigorous investigation of Fisher-Rao and Wasserstein type gradient flows concerning their gradient structures, flow equations, and their kernel approximations. Specifically, we focus on the Fisher-Rao (also known as Hellinger) geometry and its various kernel-based approximations, developing a principled theoretical framework using tools from PDE gradient flows and optimal transport theory. We also provide a complete characterization of gradient flows in the maximum-mean discrepancy (MMD) space, with connections to existing learning and inference algorithms. Our analysis reveals precise theoretical insights linking Fisher-Rao flows, Stein flows, kernel discrepancies, and nonparametric regression. We then rigorously prove evolutionary $\Gamma$-convergence for kernel-approximated Fisher-Rao flows, providing theoretical guarantees beyond pointwise convergence. Finally, we analyze energy dissipation using the Helmholtz-Rayleigh principle, establishing important connections between classical theory in mechanics and modern machine learning practice. Our results provide a unified theoretical foundation for understanding and analyzing approximations of gradient flows in machine learning applications through a rigorous gradient flow and variational method perspective.
Related papers
- Dynamic Decoupling of Placid Terminal Attractor-based Gradient Descent Algorithm [56.06235614890066]
Gradient descent (GD) and gradient descent (SGD) have been widely used in a number of application domains.
This paper carefully analyzes the dynamics of GD based on the terminal attractor at different stages of its gradient flow.
arXiv Detail & Related papers (2024-09-10T14:15:56Z) - Accelerated Evaluation of Ollivier-Ricci Curvature Lower Bounds: Bridging Theory and Computation [0.0]
Curvature serves as a potent and descriptive invariant, with its efficacy validated both theoretically and practically within graph theory.
We employ a definition of generalized Ricci curvature proposed by Ollivier, which Lin and Yau later adapted to graph theory, known as Ollivier-Ricci curvature (ORC)
ORC measures curvature using the Wasserstein distance, thereby integrating geometric concepts with probability theory and optimal transport.
arXiv Detail & Related papers (2024-05-22T02:44:46Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - Neural Sinkhorn Gradient Flow [11.4522103360875]
We introduce the Neural Sinkhorn Gradient Flow (NSGF) model, which parametrizes the time-varying velocity field of the Wasserstein gradient flow.
Our theoretical analyses show that as the sample size increases to infinity, the mean-field limit of the empirical approximation converges to the true underlying velocity field.
To further enhance model efficiency on high-dimensional tasks, a two-phase NSGF++ model is devised.
arXiv Detail & Related papers (2024-01-25T10:44:50Z) - Geometry-Aware Normalizing Wasserstein Flows for Optimal Causal
Inference [0.0]
This paper presents a groundbreaking approach to causal inference by integrating continuous normalizing flows with parametric submodels.
We leverage optimal transport and Wasserstein gradient flows to develop causal inference methodologies with minimal variance in finite-sample settings.
Preliminary experiments showcase our method's superiority, yielding lower mean-squared errors compared to standard flows.
arXiv Detail & Related papers (2023-11-30T18:59:05Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - Two-Level K-FAC Preconditioning for Deep Learning [7.699428789159717]
In the context of deep learning, many optimization methods use gradient covariance information in order to accelerate the convergence of Gradient Descent.
In particular, starting with Adagrad, a seemingly endless line of research advocates the use of diagonal approximations of the so-called empirical Fisher matrix.
One particularly successful variant of such methods is the so-called K-FAC, which uses a Kronecker-ed block-factored preconditioner.
arXiv Detail & Related papers (2020-11-01T17:54:21Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.