SEG:Seeds-Enhanced Iterative Refinement Graph Neural Network for Entity Alignment
- URL: http://arxiv.org/abs/2410.20733v1
- Date: Mon, 28 Oct 2024 04:50:46 GMT
- Title: SEG:Seeds-Enhanced Iterative Refinement Graph Neural Network for Entity Alignment
- Authors: Wei Ai, Yinghui Gao, Jianbin Li, Jiayi Du, Tao Meng, Yuntao Shou, Keqin Li,
- Abstract summary: This paper presents a soft label propagation framework that integrates multi-source data and iterative seed enhancement.
A bidirectional weighted joint loss function is implemented, which reduces the distance between positive samples and differentially processes negative samples.
Our method outperforms existing semi-supervised approaches, as evidenced by superior results on multiple datasets.
- Score: 13.487673375206276
- License:
- Abstract: Entity alignment is crucial for merging knowledge across knowledge graphs, as it matches entities with identical semantics. The standard method matches these entities based on their embedding similarities using semi-supervised learning. However, diverse data sources lead to non-isomorphic neighborhood structures for aligned entities, complicating alignment, especially for less common and sparsely connected entities. This paper presents a soft label propagation framework that integrates multi-source data and iterative seed enhancement, addressing scalability challenges in handling extensive datasets where scale computing excels. The framework uses seeds for anchoring and selects optimal relationship pairs to create soft labels rich in neighborhood features and semantic relationship data. A bidirectional weighted joint loss function is implemented, which reduces the distance between positive samples and differentially processes negative samples, taking into account the non-isomorphic neighborhood structures. Our method outperforms existing semi-supervised approaches, as evidenced by superior results on multiple datasets, significantly improving the quality of entity alignment.
Related papers
- Jointprop: Joint Semi-supervised Learning for Entity and Relation
Extraction with Heterogeneous Graph-based Propagation [13.418617500641401]
We propose Jointprop, a Heterogeneous Graph-based Propagation framework for joint semi-supervised entity and relation extraction.
We construct a unified span-based heterogeneous graph from entity and relation candidates and propagate class labels based on confidence scores.
We show that our framework outperforms the state-of-the-art semi-supervised approaches on NER and RE tasks.
arXiv Detail & Related papers (2023-05-25T09:07:04Z) - Nearest Neighbor-Based Contrastive Learning for Hyperspectral and LiDAR
Data Classification [45.026868970899514]
We propose a Nearest Neighbor-based Contrastive Learning Network (NNCNet) to learn discriminative feature representations.
Specifically, we propose a nearest neighbor-based data augmentation scheme to use enhanced semantic relationships among nearby regions.
In addition, we design a bilinear attention module to exploit the second-order and even high-order feature interactions between the HSI and LiDAR data.
arXiv Detail & Related papers (2023-01-09T13:43:54Z) - Large-scale Entity Alignment via Knowledge Graph Merging, Partitioning
and Embedding [29.81122170002021]
We propose a scalable GNN-based entity alignment approach to reduce the structure and alignment loss from three perspectives.
First, we propose a centrality-based subgraph generation algorithm to recall some landmark entities serving as the bridges between different subgraphs.
Second, we introduce self-supervised entity reconstruction to recover entity representations from incomplete neighborhood subgraphs.
Third, during the inference process, we merge the embeddings of subgraphs to make a single space for alignment search.
arXiv Detail & Related papers (2022-08-23T07:09:59Z) - Informed Multi-context Entity Alignment [27.679124991733907]
We propose an Informed Multi-context Entity Alignment (IMEA) model to address these issues.
In particular, we introduce Transformer to flexibly capture the relation, path, and neighborhood contexts.
holistic reasoning is used to estimate alignment probabilities based on both embedding similarity and the relation/entity functionality.
Results on several benchmark datasets demonstrate the superiority of our IMEA model compared with existing state-of-the-art entity alignment methods.
arXiv Detail & Related papers (2022-01-02T06:29:30Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
We propose several strategies for learning from partially overlapping labels in the context of abdominal organ segmentation.
We find that combining a semi-supervised approach with an adaptive cross entropy loss can successfully exploit heterogeneously annotated data.
arXiv Detail & Related papers (2021-07-13T09:22:24Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - EchoEA: Echo Information between Entities and Relations for Entity
Alignment [1.1470070927586016]
We propose a novel framework, Echo Entity Alignment (EchoEA), which leverages self-attention mechanism to spread entity information to relations and echo back to entities.
The experimental results on three real-world cross-lingual datasets are stable at around 96% at hits@1 on average.
arXiv Detail & Related papers (2021-07-07T07:34:21Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event-extraction is a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities.
We propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of triggers or entities.
Our approach outperforms the state-of-the-art methods in both entity and trigger extraction.
arXiv Detail & Related papers (2020-10-13T11:51:17Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z) - Neighborhood Matching Network for Entity Alignment [71.24217694278616]
Neighborhood Matching Network (NMN) is a novel entity alignment framework.
NMN estimates the similarities between entities to capture both the topological structure and the neighborhood difference.
It first uses a novel graph sampling method to distill a discriminative neighborhood for each entity.
It then adopts a cross-graph neighborhood matching module to jointly encode the neighborhood difference for a given entity pair.
arXiv Detail & Related papers (2020-05-12T08:26:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.