Random Forest-Supervised Manifold Alignment
- URL: http://arxiv.org/abs/2411.15179v1
- Date: Mon, 18 Nov 2024 20:14:50 GMT
- Title: Random Forest-Supervised Manifold Alignment
- Authors: Jake S. Rhodes, Adam G. Rustad,
- Abstract summary: This paper presents an approach to manifold alignment using random forests as a foundation for semi-supervised alignment algorithms.
We focus on enhancing two recently developed alignment graph-based by integrating class labels through geometry-preserving proximities derived from random forests.
Our approach addresses a common limitation in manifold alignment, where existing methods often fail to generate embeddings that capture sufficient information for downstream classification.
- Score: 0.0
- License:
- Abstract: Manifold alignment is a type of data fusion technique that creates a shared low-dimensional representation of data collected from multiple domains, enabling cross-domain learning and improved performance in downstream tasks. This paper presents an approach to manifold alignment using random forests as a foundation for semi-supervised alignment algorithms, leveraging the model's inherent strengths. We focus on enhancing two recently developed alignment graph-based by integrating class labels through geometry-preserving proximities derived from random forests. These proximities serve as a supervised initialization for constructing cross-domain relationships that maintain local neighborhood structures, thereby facilitating alignment. Our approach addresses a common limitation in manifold alignment, where existing methods often fail to generate embeddings that capture sufficient information for downstream classification. By contrast, we find that alignment models that use random forest proximities or class-label information achieve improved accuracy on downstream classification tasks, outperforming single-domain baselines. Experiments across multiple datasets show that our method typically enhances cross-domain feature integration and predictive performance, suggesting that random forest proximities offer a practical solution for tasks requiring multimodal data alignment.
Related papers
- SEG:Seeds-Enhanced Iterative Refinement Graph Neural Network for Entity Alignment [13.487673375206276]
This paper presents a soft label propagation framework that integrates multi-source data and iterative seed enhancement.
A bidirectional weighted joint loss function is implemented, which reduces the distance between positive samples and differentially processes negative samples.
Our method outperforms existing semi-supervised approaches, as evidenced by superior results on multiple datasets.
arXiv Detail & Related papers (2024-10-28T04:50:46Z) - Improve Cross-domain Mixed Sampling with Guidance Training for Adaptive Segmentation [9.875170018805768]
Unsupervised Domain Adaptation (UDA) endeavors to adjust models trained on a source domain to perform well on a target domain without requiring additional annotations.
We propose a novel auxiliary task called Guidance Training.
This task facilitates the effective utilization of cross-domain mixed sampling techniques while mitigating distribution shifts from the real world.
We demonstrate the efficacy of our approach by integrating it with existing methods, consistently improving performance.
arXiv Detail & Related papers (2024-03-22T07:12:48Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain.
We propose a novel contrastive learning method by processing low-confidence samples.
We evaluate the proposed method in both unsupervised and semi-supervised DA settings.
arXiv Detail & Related papers (2022-02-06T15:45:45Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Adaptive Methods for Aggregated Domain Generalization [26.215904177457997]
In many settings, privacy concerns prohibit obtaining domain labels for the training data samples.
We propose a domain-adaptive approach to this problem, which operates in two steps.
Our approach achieves state-of-the-art performance on a variety of domain generalization benchmarks without using domain labels.
arXiv Detail & Related papers (2021-12-09T08:57:01Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.