From Cool Demos to Production-Ready FMware: Core Challenges and a Technology Roadmap
- URL: http://arxiv.org/abs/2410.20791v2
- Date: Mon, 27 Jan 2025 17:05:55 GMT
- Title: From Cool Demos to Production-Ready FMware: Core Challenges and a Technology Roadmap
- Authors: Gopi Krishnan Rajbahadur, Gustavo A. Oliva, Dayi Lin, Ahmed E. Hassan,
- Abstract summary: We conduct a semi-structured thematic synthesis to identify the key challenges in productionizing FMware across diverse data sources.
We identify critical issues in FM selection, data and model alignment, prompt engineering, agent orchestration, system testing, and deployment.
We discuss needed technologies and strategies to address these challenges and offer guidance on how to enable the transition from demonstration systems to scalable, production-ready FMware solutions.
- Score: 12.313710667597897
- License:
- Abstract: The rapid expansion of foundation models (FMs), such as large language models (LLMs), has given rise to FMware--software systems that integrate FMs as core components. While building demonstration-level FMware is relatively straightforward, transitioning to production-ready systems presents numerous challenges, including reliability, high implementation costs, scalability, and compliance with privacy regulations. Our paper conducts a semi-structured thematic synthesis to identify the key challenges in productionizing FMware across diverse data sources including our own industry experience in developing FMArts--a FMware lifecycle engineering platform and integrating it into Huawei cloud, grey literature, academic publications, hands-on involvement in the Open Platform for Enterprise AI (OPEA), organizing the AIware conference and Bootcamp, and co-leading the ISO SPDX SBOM working group on AI and datasets. We identify critical issues in FM selection, data and model alignment, prompt engineering, agent orchestration, system testing, and deployment, alongside cross-cutting concerns such as memory management, observability, and feedback integration. We discuss needed technologies and strategies to address these challenges and offer guidance on how to enable the transition from demonstration systems to scalable, production-ready FMware solutions. Our findings underscore the importance of continued research and multi-industry collaboration to advance the development of production-ready FMware.
Related papers
- Towards Human-Guided, Data-Centric LLM Co-Pilots [53.35493881390917]
CliMB-DC is a human-guided, data-centric framework for machine learning co-pilots.
It combines advanced data-centric tools with LLM-driven reasoning to enable robust, context-aware data processing.
We show how CliMB-DC can transform uncurated datasets into ML-ready formats.
arXiv Detail & Related papers (2025-01-17T17:51:22Z) - Specifications: The missing link to making the development of LLM systems an engineering discipline [65.10077876035417]
We discuss the progress the field has made so far-through advances like structured outputs, process supervision, and test-time compute.
We outline several future directions for research to enable the development of modular and reliable LLM-based systems.
arXiv Detail & Related papers (2024-11-25T07:48:31Z) - Software Performance Engineering for Foundation Model-Powered Software (FMware) [6.283211168007636]
Foundation Models (FMs) like Large Language Models (LLMs) are revolutionizing software development.
This paper highlights the significance of Software Performance Engineering (SPE) in FMware.
We identify four key challenges: cognitive architecture design, communication protocols, tuning and optimization, and deployment.
arXiv Detail & Related papers (2024-11-14T16:42:19Z) - Software Engineering and Foundation Models: Insights from Industry Blogs Using a Jury of Foundation Models [11.993910471523073]
We analyze 155 FM4SE and 997 SE4FM blog posts from leading technology companies.
We observed that while code generation is the most prominent FM4SE task, FMs are leveraged for many other SE activities.
Although the emphasis is on cloud deployments, there is a growing interest in compressing FMs and deploying them on smaller devices.
arXiv Detail & Related papers (2024-10-11T17:27:04Z) - Telecom Foundation Models: Applications, Challenges, and Future Trends [0.5249805590164903]
Foundation Models (FMs) show effective generalization capabilities in various domains in language, vision, and decision-making tasks.
FMs can be trained on multiple data modalities generated from the telecom ecosystem and leverage specialized domain knowledge.
This paper investigates the potential opportunities of using FMs to shape the future of telecom technologies and standards.
arXiv Detail & Related papers (2024-08-02T21:09:13Z) - Foundation Model Engineering: Engineering Foundation Models Just as Engineering Software [8.14005646330662]
Foundation Models (FMs) become a new type of software by treating data and models as the source code.
We outline our vision of introducing Foundation Model (FM) engineering, a strategic response to the anticipated FM crisis.
arXiv Detail & Related papers (2024-07-11T04:40:02Z) - Rethinking Software Engineering in the Foundation Model Era: A Curated
Catalogue of Challenges in the Development of Trustworthy FMware [13.21876203209586]
We identify 10 key SE4FMware challenges that have caused enterprise FMware development to be unproductive, costly, and risky.
We present FMArts, which is our long-term effort towards creating a cradle-to-grave platform for the engineering of trustworthy FMware.
arXiv Detail & Related papers (2024-02-25T00:53:16Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
Vision foundation models (VFMs) serve as potent building blocks for a wide range of AI applications.
The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs.
This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions.
arXiv Detail & Related papers (2024-01-16T01:57:24Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications.
Currently, the exploration of the interplay between FMs and federated learning (FL) is still in its nascent stage.
This article explores the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities.
arXiv Detail & Related papers (2023-10-06T04:13:10Z) - Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises [55.57032418885258]
Digital twins have the potential for cost-effective software development and maintenance strategies.
We interviewed SMEs about their current development processes.
First results show that real-time requirements prevent, to date, a Software-in-the-Loop development approach.
arXiv Detail & Related papers (2023-09-17T08:56:36Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.