Temporal Streaming Batch Principal Component Analysis for Time Series Classification
- URL: http://arxiv.org/abs/2410.20820v1
- Date: Mon, 28 Oct 2024 08:11:17 GMT
- Title: Temporal Streaming Batch Principal Component Analysis for Time Series Classification
- Authors: Enshuo Yan, Huachuan Wang, Weihao Xia,
- Abstract summary: We propose a principal component analysis (PCA)-based temporal streaming compression and dimensionality reduction algorithm for time series data.
Our method demonstrates a trend of increasing effectiveness as sequence length grows.
- Score: 4.622165486890317
- License:
- Abstract: In multivariate time series classification, although current sequence analysis models have excellent classification capabilities, they show significant shortcomings when dealing with long sequence multivariate data, such as prolonged training times and decreased accuracy. This paper focuses on optimizing model performance for long-sequence multivariate data by mitigating the impact of extended time series and multiple variables on the model. We propose a principal component analysis (PCA)-based temporal streaming compression and dimensionality reduction algorithm for time series data (temporal streaming batch PCA, TSBPCA), which continuously updates the compact representation of the entire sequence through streaming PCA time estimation with time block updates, enhancing the data representation capability of a range of sequence analysis models. We evaluated this method using various models on five real datasets, and the experimental results show that our method performs well in terms of classification accuracy and time efficiency. Notably, our method demonstrates a trend of increasing effectiveness as sequence length grows; on the two longest sequence datasets, accuracy improved by about 7.2%, and execution time decreased by 49.5%.
Related papers
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
We propose Multi Scale Dilated Convolution Network (MSDCN) to capture the period and trend characteristics of long time series.
We design different convolution blocks with exponentially growing dilations and varying kernel sizes to sample time series data at different scales.
To validate the effectiveness of the proposed approach, we conduct experiments on eight challenging long-term time series forecasting benchmark datasets.
arXiv Detail & Related papers (2024-05-09T02:11:01Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - Efficient High-Resolution Time Series Classification via Attention
Kronecker Decomposition [17.71968215237596]
High-resolution time series classification is essential due to the increasing availability of detailed temporal data in various domains.
We propose a new time series transformer backbone (KronTime) by introducing Kronecker-decomposed attention to process such multi-level time series.
Experiments on four long time series datasets demonstrate superior classification results with improved efficiency compared to baseline methods.
arXiv Detail & Related papers (2024-03-07T20:14:20Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
Real-world tasks such as forecasting weather, electricity consumption, and stock market involve predicting data that vary over time.
Time-series data are generally recorded over a long period of observation with long sequences owing to their periodic characteristics and long-range dependencies over time.
We propose two novel modules, Grouped Self-Attention (GSA) and Compressed Cross-Attention (CCA)
Our proposed model efficiently exhibited reduced computational complexity and performance comparable to or better than existing methods.
arXiv Detail & Related papers (2022-10-02T06:58:49Z) - Financial Time Series Data Augmentation with Generative Adversarial
Networks and Extended Intertemporal Return Plots [2.365537081046599]
We apply state-of-the art image-based generative models for the task of data augmentation.
We introduce the extended intertemporal return plot (XIRP), a new image representation for time series.
Our approach proves to be effective in reducing the return forecast error by 7% on 79% of the financial data sets.
arXiv Detail & Related papers (2022-05-18T13:39:27Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Enhancing Transformer Efficiency for Multivariate Time Series
Classification [12.128991867050487]
We propose a methodology to investigate the relationship between model efficiency and accuracy, as well as its complexity.
Comprehensive experiments on benchmark MTS datasets illustrate the effectiveness of our method.
arXiv Detail & Related papers (2022-03-28T03:25:19Z) - Robust Augmentation for Multivariate Time Series Classification [20.38907456958682]
We show that the simple methods of cutout, cutmix, mixup, and window warp improve the robustness and overall performance.
We show that the InceptionTime network with augmentation improves accuracy by 1% to 45% in 18 different datasets.
arXiv Detail & Related papers (2022-01-27T18:57:49Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.