Challenges in Implementing a Recommender System for Historical Research in the Humanities
- URL: http://arxiv.org/abs/2410.20909v1
- Date: Mon, 28 Oct 2024 10:39:08 GMT
- Title: Challenges in Implementing a Recommender System for Historical Research in the Humanities
- Authors: Florian Atzenhofer-Baumgartner, Bernhard C. Geiger, Christoph Trattner, Georg Vogeler, Dominik Kowald,
- Abstract summary: This extended abstract describes the challenges in implementing recommender systems for digital archives in the humanities, focusing on Monasterium.net.
We discuss three key aspects: (i) the unique characteristics of so-called charters as items for recommendation, (ii) the complex multi-stakeholder environment, and (iii) the distinct information-seeking behavior of scholars in the humanities.
- Score: 8.61578278259326
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This extended abstract describes the challenges in implementing recommender systems for digital archives in the humanities, focusing on Monasterium.net, a platform for historical legal documents. We discuss three key aspects: (i) the unique characteristics of so-called charters as items for recommendation, (ii) the complex multi-stakeholder environment, and (iii) the distinct information-seeking behavior of scholars in the humanities. By examining these factors, we aim to contribute to the development of more effective and tailored recommender systems for (digital) humanities research.
Related papers
- Multi-Objective Recommendation in the Era of Generative AI: A Survey of Recent Progress and Future Prospects [11.092520571626732]
generative AI enables content generation, data synthesis, and personalized experiences.<n>Generative AI helps to address the issue of data sparsity and improving the overall performance of recommendation systems.<n>There remains a lack of comprehensive studies on multi-objective recommendation systems based on generative AI technologies.
arXiv Detail & Related papers (2025-06-20T10:30:39Z) - Multi-Interest Recommendation: A Survey [67.28277752101006]
Multi-interest recommendation addresses the challenge of extracting multiple interest representations from users' historical interactions.<n>It has drawn broad interest in recommendation research.<n>We systematically review the progress, solutions, challenges, and future directions of multi-interest recommendation.
arXiv Detail & Related papers (2025-06-18T09:05:32Z) - Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
This tutorial explores two primary approaches for integrating large language models (LLMs)
It provides a comprehensive overview of generative large recommendation models, including their recent advancements, challenges, and potential research directions.
Key topics include data quality, scaling laws, user behavior mining, and efficiency in training and inference.
arXiv Detail & Related papers (2025-02-19T14:48:25Z) - A Survey on Recommendation Unlearning: Fundamentals, Taxonomy, Evaluation, and Open Questions [16.00188808166725]
recommender systems have become increasingly influential in shaping user behavior and decision-making.
Widespread adoption of machine learning models in recommender systems has raised significant concerns regarding user privacy and security.
Traditional machine unlearning methods are ill-suited for recommendation unlearning due to the unique challenges posed by collaborative interactions and model parameters.
arXiv Detail & Related papers (2024-12-17T11:58:55Z) - The 1st Workshop on Human-Centered Recommender Systems [27.23807230278776]
This workshop aims to provide a platform for researchers to explore the development of Human-Centered Recommender Systems.
HCRS refers to the creation of recommender systems that prioritize human needs, values, and capabilities at the core of their design and operation.
In this workshop, topics will include, but are not limited to, robustness, privacy, transparency, fairness, diversity, accountability, ethical considerations, and user-friendly design.
arXiv Detail & Related papers (2024-11-22T06:46:41Z) - Value Identification in Multistakeholder Recommender Systems for Humanities and Historical Research: The Case of the Digital Archive Monasterium.net [9.24340769982606]
This paper offers an initial value identification of the multiple stakeholders that might be impacted by recommendations in Monasterium.net.
We discuss the diverse values and objectives of its stakeholders, such as editors, aggregators, platform owners, researchers, publishers, and funding agencies.
arXiv Detail & Related papers (2024-09-26T12:07:46Z) - All Roads Lead to Rome: Unveiling the Trajectory of Recommender Systems Across the LLM Era [63.649070507815715]
We aim to integrate recommender systems into a broader picture, and pave the way for more comprehensive solutions for future research.
We identify two evolution paths of modern recommender systems -- via list-wise recommendation and conversational recommendation.
We point out that the information effectiveness of the recommendation is increased, while the user's acquisition cost is decreased.
arXiv Detail & Related papers (2024-07-14T05:02:21Z) - A Survey on 3D Skeleton Based Person Re-Identification: Approaches,
Designs, Challenges, and Future Directions [71.99165135905827]
Person re-identification via 3D skeletons is an important emerging research area that triggers great interest in the pattern recognition community.
With distinctive advantages for many application scenarios, a great diversity of 3D skeleton based person re-identification methods have been proposed in recent years.
This paper provides a systematic survey on current SRID approaches, model designs, challenges, and future directions.
arXiv Detail & Related papers (2024-01-27T04:52:24Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - Recent Developments in Recommender Systems: A Survey [34.810859384592355]
The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems.
The survey analyzes the robustness, data bias, and fairness issues in recommender systems.
The study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field.
arXiv Detail & Related papers (2023-06-22T05:51:49Z) - Recent Advances in Heterogeneous Relation Learning for Recommendation [5.390295867837705]
We review the development of recommendation frameworks with the focus on heterogeneous relational learning.
The objective of this task is to map heterogeneous relational data into latent representation space.
We discuss the learning approaches in each category, such as matrix factorization, attention mechanism and graph neural networks.
arXiv Detail & Related papers (2021-10-07T13:32:04Z) - Towards Explainable Scientific Venue Recommendations [0.09668407688201358]
We propose an unsophisticated method that advances the state-of-the-art in this area.
First, we enhance the interpretability of recommendations through non-negative matrix factorization based topic models.
Second, we surprisingly can obtain competitive recommendation performance while using simpler learning methods.
arXiv Detail & Related papers (2021-09-21T10:25:26Z) - Recent Advances in Monocular 2D and 3D Human Pose Estimation: A Deep
Learning Perspective [69.44384540002358]
We provide a comprehensive and holistic 2D-to-3D perspective to tackle this problem.
We categorize the mainstream and milestone approaches since the year 2014 under unified frameworks.
We also summarize the pose representation styles, benchmarks, evaluation metrics, and the quantitative performance of popular approaches.
arXiv Detail & Related papers (2021-04-23T11:07:07Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.