A Survey on Recommendation Unlearning: Fundamentals, Taxonomy, Evaluation, and Open Questions
- URL: http://arxiv.org/abs/2412.12836v1
- Date: Tue, 17 Dec 2024 11:58:55 GMT
- Title: A Survey on Recommendation Unlearning: Fundamentals, Taxonomy, Evaluation, and Open Questions
- Authors: Yuyuan Li, Xiaohua Feng, Chaochao Chen, Qiang Yang,
- Abstract summary: recommender systems have become increasingly influential in shaping user behavior and decision-making.
Widespread adoption of machine learning models in recommender systems has raised significant concerns regarding user privacy and security.
Traditional machine unlearning methods are ill-suited for recommendation unlearning due to the unique challenges posed by collaborative interactions and model parameters.
- Score: 16.00188808166725
- License:
- Abstract: Recommender systems have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. Meanwhile, the widespread adoption of machine learning models in recommender systems has raised significant concerns regarding user privacy and security. As compliance with privacy regulations becomes more critical, there is a pressing need to address the issue of recommendation unlearning, i.e., eliminating the memory of specific training data from the learned recommendation models. Despite its importance, traditional machine unlearning methods are ill-suited for recommendation unlearning due to the unique challenges posed by collaborative interactions and model parameters. This survey offers a comprehensive review of the latest advancements in recommendation unlearning, exploring the design principles, challenges, and methodologies associated with this emerging field. We provide a unified taxonomy that categorizes different recommendation unlearning approaches, followed by a summary of widely used benchmarks and metrics for evaluation. By reviewing the current state of research, this survey aims to guide the development of more efficient, scalable, and robust recommendation unlearning techniques. Furthermore, we identify open research questions in this field, which could pave the way for future innovations not only in recommendation unlearning but also in a broader range of unlearning tasks across different machine learning applications.
Related papers
- Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
This tutorial explores two primary approaches for integrating large language models (LLMs)
It provides a comprehensive overview of generative large recommendation models, including their recent advancements, challenges, and potential research directions.
Key topics include data quality, scaling laws, user behavior mining, and efficiency in training and inference.
arXiv Detail & Related papers (2025-02-19T14:48:25Z) - CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence [55.21518669075263]
CURE4Rec is the first comprehensive benchmark for recommendation unlearning evaluation.
We consider the deeper influence of unlearning on recommendation fairness and robustness towards data with varying impact levels.
arXiv Detail & Related papers (2024-08-26T16:21:50Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Recent Advances in Heterogeneous Relation Learning for Recommendation [5.390295867837705]
We review the development of recommendation frameworks with the focus on heterogeneous relational learning.
The objective of this task is to map heterogeneous relational data into latent representation space.
We discuss the learning approaches in each category, such as matrix factorization, attention mechanism and graph neural networks.
arXiv Detail & Related papers (2021-10-07T13:32:04Z) - KnowledgeCheckR: Intelligent Techniques for Counteracting Forgetting [52.623349754076024]
We provide an overview of the recommendation approaches integrated in KnowledgeCheckR.
Examples thereof are utility-based recommendation that helps to identify learning contents to be repeated in the future, collaborative filtering approaches that help to implement session-based recommendation, and content-based recommendation that supports intelligent question answering.
arXiv Detail & Related papers (2021-02-15T20:06:28Z) - Reinforcement Learning for Strategic Recommendations [32.73903761398027]
Strategic recommendations (SR) refer to the problem where an intelligent agent observes the sequential behaviors and activities of users and decides when and how to interact with them to optimize some long-term objectives, both for the user and the business.
At Adobe research, we have been implementing such systems for various use-cases, including points of interest recommendations, tutorial recommendations, next step guidance in multi-media editing software, and ad recommendation for optimizing lifetime value.
There are many research challenges when building these systems, such as modeling the sequential behavior of users, deciding when to intervene and offer recommendations without annoying the user, evaluating policies offline with
arXiv Detail & Related papers (2020-09-15T20:45:48Z) - Developing a Recommendation Benchmark for MLPerf Training and Inference [16.471395965484145]
We aim to define an industry-relevant recommendation benchmark for theerferf Training andInference Suites.
The paper synthesizes the desirable modeling strategies for personalized recommendation systems.
We lay out desirable characteristics of recommendation model architectures and data sets.
arXiv Detail & Related papers (2020-03-16T17:13:00Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.