論文の概要: Long Sequence Modeling with Attention Tensorization: From Sequence to Tensor Learning
- arxiv url: http://arxiv.org/abs/2410.20926v1
- Date: Mon, 28 Oct 2024 11:08:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:14:25.901900
- Title: Long Sequence Modeling with Attention Tensorization: From Sequence to Tensor Learning
- Title(参考訳): 意図的テンソル化を用いたロングシーケンスモデリング:シーケンスからテンソル学習へ
- Authors: Aosong Feng, Rex Ying, Leandros Tassiulas,
- Abstract要約: 本稿では、長い入力列をコンパクトなテンソル表現にテンソル化し、各変換次元に注意を向けることで、注意領域を拡大することを提案する。
提案手法は,トークンの依存関係をマルチホップアテンションプロセスとして符号化し,フルアテンションのクロネッカー分解と等価であることを示す。
- 参考スコア(独自算出の注目度): 20.51822826798248
- License:
- Abstract: As the demand for processing extended textual data grows, the ability to handle long-range dependencies and maintain computational efficiency is more critical than ever. One of the key issues for long-sequence modeling using attention-based model is the mismatch between the limited-range modeling power of full attention and the long-range token dependency in the input sequence. In this work, we propose to scale up the attention receptive field by tensorizing long input sequences into compact tensor representations followed by attention on each transformed dimension. The resulting Tensorized Attention can be adopted as efficient transformer backbones to extend input context length with improved memory and time efficiency. We show that the proposed attention tensorization encodes token dependencies as a multi-hop attention process, and is equivalent to Kronecker decomposition of full attention. Extensive experiments show that tensorized attention can be used to adapt pretrained LLMs with improved efficiency. Notably, Llama-8B with tensorization is trained under 32,768 context length and can steadily extrapolate to 128k length during inference with $11\times$ speedup, compared to full attention with FlashAttention-2.
- Abstract(参考訳): 拡張テキストデータ処理の需要が増大するにつれて、長距離依存を処理し、計算効率を維持する能力はこれまで以上に重要になる。
注意に基づくモデルを用いたロングシーケンスモデリングの鍵となる問題は、フルアテンションの限られた範囲のモデリングパワーと入力シーケンスにおける長距離トークン依存性のミスマッチである。
本研究では、長い入力列をコンパクトなテンソル表現にし、各変換次元に注意を向けることで、注意受容場を拡大することを提案する。
結果として得られるテンソル化アテンションは、メモリと時間効率を改善して入力コンテキスト長を拡張する効率的なトランスフォーマーバックボーンとして採用することができる。
提案手法は,トークンの依存関係をマルチホップアテンションプロセスとして符号化し,フルアテンションのクロネッカー分解と等価であることを示す。
広汎な実験により、テンソル化された注意は、事前訓練されたLLMを効率良く適応させることができることが示されている。
特に、テンソル化を施したLlama-8Bは32,768コンテキスト長でトレーニングされており、FlashAttention-2のフルアテンションに比べて111\times$ Speedupの推論で128kの長さまで徐々に外挿することができる。
関連論文リスト
- Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - CItruS: Chunked Instruction-aware State Eviction for Long Sequence Modeling [52.404072802235234]
本稿では,下流タスクに有用な注目度を隠蔽状態の消去プロセスに統合する新しいモデリング手法であるChunked Instruction-Aware State Eviction(CItruS)を紹介する。
トレーニング不要な手法は,メモリ予算が同じ条件下で,複数の強いベースライン上での長いシーケンス理解および検索タスクにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-17T18:34:58Z) - Various Lengths, Constant Speed: Efficient Language Modeling with Lightning Attention [19.618556742380086]
固定メモリ使用時の各種シーケンス長のトレーニング速度を一定に維持する最初の線形アテンション実装であるLightning Attentionを提案する。
有効性を保ちながら精度を高めるために,我々の雷の注意に合わせた新しいアーキテクチャであるTransNormerLLM(TNL)を導入する。
論文 参考訳(メタデータ) (2024-05-27T17:38:13Z) - Tensor Attention Training: Provably Efficient Learning of Higher-order Transformers [18.331374727331077]
テンソルアテンションの時間的複雑さは、変圧器におけるその利用にとって重要な障害である。
注意訓練の後方勾配をほぼ線形時間で計算できることを実証する。
論文 参考訳(メタデータ) (2024-05-26T02:59:13Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
トランスフォーマーベースのモデルは、自然言語処理の最も広く使われているアーキテクチャの1つとして登場した。
これらの巨大なモデルはメモリが空腹で、最先端のAIアクセラレータでも大きな推論レイテンシが生じる。
本稿ではトークン生成フェーズの自己認識をスケーラブルに計算する手法であるLeanAttentionを提案する。
論文 参考訳(メタデータ) (2024-05-17T00:52:39Z) - LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory [63.41820940103348]
自己保持機構の計算コストは、長いシーケンスの実用性を制限する。
我々はLongVQと呼ばれる新しい手法を提案し、長さ固定されたコードブックとしてグローバルな抽象化を圧縮する。
LongVQは動的グローバルパターンとローカルパターンを効果的に維持し、長距離依存性の問題の欠如を補うのに役立つ。
論文 参考訳(メタデータ) (2024-04-17T08:26:34Z) - Bifurcated Attention: Accelerating Massively Parallel Decoding with Shared Prefixes in LLMs [39.16152482491236]
Bifurcated attentionは、共有コンテキストバッチデコードシナリオにおける言語モデル推論を強化するために設計された手法である。
提案手法は,高バッチサイズおよび拡張コンテキスト長のレイテンシに寄与する重要な要因である冗長メモリIOコストの課題に対処する。
論文 参考訳(メタデータ) (2024-03-13T16:30:57Z) - Efficient Long-Range Transformers: You Need to Attend More, but Not
Necessarily at Every Layer [36.75562615596186]
我々は、Mixed Attention Spansを用いた実装が容易な変圧器であるMASFormerを提案する。
MASFormerは、長距離依存関係をキャプチャするために完全に注意を払っているが、少数の層しか持たない。
実験の結果,1.3BパラメータのデコーダのみのMASFormerモデルは,バニラ変圧器との競合性能を十分に発揮できることがわかった。
論文 参考訳(メタデータ) (2023-10-19T03:32:05Z) - Hyena Hierarchy: Towards Larger Convolutional Language Models [115.82857881546089]
ハイエナは、暗黙的にパラメトリケートされた長い畳み込みとデータ制御ゲーティングをインターリーブすることによって構築された注意のための準四分法的なドロップイン置換である。
数千から数十万のトークン列のリコールおよび推論タスクにおいて、ハイエナは状態空間やその他の暗黙的かつ明示的なメソッドに依存する演算子よりも50ポイント以上精度を向上させる。
論文 参考訳(メタデータ) (2023-02-21T18:29:25Z) - Learning Sequence Representations by Non-local Recurrent Neural Memory [61.65105481899744]
教師付きシーケンス表現学習のためのNon-local Recurrent Neural Memory (NRNM)を提案する。
我々のモデルは長距離依存を捉えることができ、潜伏した高レベル特徴を我々のモデルで抽出することができる。
我々のモデルは、これらのシーケンスアプリケーションごとに特別に設計された他の最先端の手法と比較して好意的に比較する。
論文 参考訳(メタデータ) (2022-07-20T07:26:15Z) - Hard Non-Monotonic Attention for Character-Level Transduction [65.17388794270694]
2つの弦間の多くの非単調なアライメントを余剰化するための厳密な指数時間アルゴリズムを導入する。
ソフト・モノトニック・アテンションとハード・ノン・モノトニック・アテンションを実験的に比較したところ、正確なアルゴリズムは近似よりも性能を著しく改善し、ソフト・アテンションよりも優れていた。
論文 参考訳(メタデータ) (2018-08-29T20:00:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。