Code Collaborate: Dissecting Team Dynamics in First-Semester Programming Students
- URL: http://arxiv.org/abs/2410.20939v1
- Date: Mon, 28 Oct 2024 11:42:05 GMT
- Title: Code Collaborate: Dissecting Team Dynamics in First-Semester Programming Students
- Authors: Santiago Berrezueta-Guzman, Patrick Bassner, Stefan Wagner, Stephan Krusche,
- Abstract summary: The study highlights the collaboration trends that emerge as first-semester students develop a 2D game project.
Results indicate that students often slightly overestimate their contributions, with more engaged individuals more likely to acknowledge mistakes.
Team performance shows no significant variation based on nationality or gender composition, though teams that disbanded frequently consisted of lone wolves.
- Score: 3.0294711465150006
- License:
- Abstract: Understanding collaboration patterns in introductory programming courses is essential, as teamwork is a critical skill in computer science. In professional environments, software development relies on effective teamwork, navigating diverse perspectives, and contributing to shared goals. This paper offers a comprehensive analysis of the factors influencing team efficiency and project success, providing actionable insights to enhance the effectiveness of collaborative programming education. By analyzing version control data, survey responses, and performance metrics, the study highlights the collaboration trends that emerge as first-semester students develop a 2D game project. Results indicate that students often slightly overestimate their contributions, with more engaged individuals more likely to acknowledge mistakes. Team performance shows no significant variation based on nationality or gender composition, though teams that disbanded frequently consisted of lone wolves, highlighting collaboration challenges and the need for strengthened teamwork skills. Presentations closely reflected individual project contributions, with active students excelling in evaluative questioning and performing better on the final exam. Additionally, the complete absence of plagiarism underscores the effectiveness of proactive academic integrity measures, reinforcing honest collaboration in educational settings.
Related papers
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.
We present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning.
We derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
arXiv Detail & Related papers (2024-10-24T10:48:42Z) - TeamLoRA: Boosting Low-Rank Adaptation with Expert Collaboration and Competition [61.91764883512776]
We introduce an innovative PEFT method, TeamLoRA, consisting of a collaboration and competition module for experts.
By doing so, TeamLoRA connects the experts as a "Team" with internal collaboration and competition, enabling a faster and more accurate PEFT paradigm for multi-task learning.
arXiv Detail & Related papers (2024-08-19T09:58:53Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - CLGT: A Graph Transformer for Student Performance Prediction in
Collaborative Learning [6.140954034246379]
We present an extended graph transformer framework for collaborative learning (CLGT) for evaluating and predicting the performance of students.
The experimental results confirm that the proposed CLGT outperforms the baseline models in terms of performing predictions based on the real-world datasets.
arXiv Detail & Related papers (2023-07-30T09:54:30Z) - Team Composition in Software Engineering Education [0.5439020425819]
The study presented in this paper aims to better understand the student team composition in software engineering education.
The initial findings of the ongoing Action research study are presented.
arXiv Detail & Related papers (2023-06-14T11:00:05Z) - Detecting and Optimising Team Interactions in Software Development [58.720142291102135]
This paper presents a data-driven approach to detect the functional interaction structure for software development teams.
Our approach considers differences in the activity levels of team members and uses a block-constrained configuration model.
We show how our approach enables teams to compare their functional interaction structure against synthetically created benchmark scenarios.
arXiv Detail & Related papers (2023-02-28T14:53:29Z) - Composite Learning for Robust and Effective Dense Predictions [81.2055761433725]
Multi-task learning promises better model generalization on a target task by jointly optimizing it with an auxiliary task.
We find that jointly training a dense prediction (target) task with a self-supervised (auxiliary) task can consistently improve the performance of the target task, while eliminating the need for labeling auxiliary tasks.
arXiv Detail & Related papers (2022-10-13T17:59:16Z) - Towards Explainable Student Group Collaboration Assessment Models Using
Temporal Representations of Individual Student Roles [12.945344702592557]
We propose using simple temporal-CNN deep-learning models to assess student group collaboration.
We check the applicability of dynamically changing feature representations for student group collaboration assessment.
We also use Grad-CAM visualizations to better understand and interpret the important temporal indices that led to the deep-learning model's decision.
arXiv Detail & Related papers (2021-06-17T16:00:08Z) - Who does what? Work division and allocation strategies of computer
science student teams [5.863264019032882]
The aim of this research is to gain insight into the work division and allocation strategies applied by computer science students during group assignments.
Motivated primarily by grade and efficiency factors, students choose and allocate tasks based on their prior expertise and preferences.
Based on our findings, we argue that the setup of group assignments can limit student motivation for practicing new software engineering skills.
arXiv Detail & Related papers (2021-03-04T12:27:07Z) - FERN: Fair Team Formation for Mutually Beneficial Collaborative Learning [9.484474204788349]
This work introduces FERN, a fair team formation approach that promotes mutually beneficial peer learning.
We show this problem as a discrete optimization problem to be NPhard and propose a hill-climbing algorithm.
arXiv Detail & Related papers (2020-11-23T18:38:01Z) - Dual Policy Distillation [58.43610940026261]
Policy distillation, which transfers a teacher policy to a student policy, has achieved great success in challenging tasks of deep reinforcement learning.
In this work, we introduce dual policy distillation(DPD), a student-student framework in which two learners operate on the same environment to explore different perspectives of the environment.
The key challenge in developing this dual learning framework is to identify the beneficial knowledge from the peer learner for contemporary learning-based reinforcement learning algorithms.
arXiv Detail & Related papers (2020-06-07T06:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.