Simultaneous Unlearning of Multiple Protected User Attributes From Variational Autoencoder Recommenders Using Adversarial Training
- URL: http://arxiv.org/abs/2410.20965v1
- Date: Mon, 28 Oct 2024 12:36:00 GMT
- Title: Simultaneous Unlearning of Multiple Protected User Attributes From Variational Autoencoder Recommenders Using Adversarial Training
- Authors: Gustavo Escobedo, Christian Ganhör, Stefan Brandl, Mirjam Augstein, Markus Schedl,
- Abstract summary: We present AdvXMultVAE which aims to unlearn multiple protected attributes simultaneously to improve fairness across demographic user groups.
Our experiments on two datasets, LFM-2b-100k and Ml-1m, show that our approach can yield better results than its singular removal counterparts.
- Score: 8.272412404173954
- License:
- Abstract: In widely used neural network-based collaborative filtering models, users' history logs are encoded into latent embeddings that represent the users' preferences. In this setting, the models are capable of mapping users' protected attributes (e.g., gender or ethnicity) from these user embeddings even without explicit access to them, resulting in models that may treat specific demographic user groups unfairly and raise privacy issues. While prior work has approached the removal of a single protected attribute of a user at a time, multiple attributes might come into play in real-world scenarios. In the work at hand, we present AdvXMultVAE which aims to unlearn multiple protected attributes (exemplified by gender and age) simultaneously to improve fairness across demographic user groups. For this purpose, we couple a variational autoencoder (VAE) architecture with adversarial training (AdvMultVAE) to support simultaneous removal of the users' protected attributes with continuous and/or categorical values. Our experiments on two datasets, LFM-2b-100k and Ml-1m, from the music and movie domains, respectively, show that our approach can yield better results than its singular removal counterparts (based on AdvMultVAE) in effectively mitigating demographic biases whilst improving the anonymity of latent embeddings.
Related papers
- MDAP: A Multi-view Disentangled and Adaptive Preference Learning Framework for Cross-Domain Recommendation [63.27390451208503]
Cross-domain Recommendation systems leverage multi-domain user interactions to improve performance.
We propose the Multi-view Disentangled and Adaptive Preference Learning framework.
Our framework uses a multiview encoder to capture diverse user preferences.
arXiv Detail & Related papers (2024-10-08T10:06:45Z) - FedDMF: Privacy-Preserving User Attribute Prediction using Deep Matrix
Factorization [1.9181612035055007]
We propose a novel algorithm for predicting user attributes without requiring user matching.
Our approach involves training deep matrix factorization models on different clients and sharing only attribute item vectors.
This allows us to predict user attributes without sharing the user vectors themselves.
arXiv Detail & Related papers (2023-12-24T06:49:00Z) - Enhancing User Intent Capture in Session-Based Recommendation with
Attribute Patterns [77.19390850643944]
We propose the Frequent Attribute Pattern Augmented Transformer (FAPAT)
FAPAT characterizes user intents by building attribute transition graphs and matching attribute patterns.
We demonstrate that FAPAT consistently outperforms state-of-the-art methods by an average of 4.5% across various evaluation metrics.
arXiv Detail & Related papers (2023-12-23T03:28:18Z) - User Inference Attacks on Large Language Models [26.616016510555088]
Fine-tuning is a common and effective method for tailoring large language models (LLMs) to specialized tasks and applications.
We study the privacy implications of fine-tuning LLMs on user data.
arXiv Detail & Related papers (2023-10-13T17:24:52Z) - Attention Weighted Mixture of Experts with Contrastive Learning for
Personalized Ranking in E-commerce [21.7796124109]
We propose Attention Weighted Mixture of Experts (AW-MoE) with contrastive learning for personalized ranking.
AW-MoE has been successfully deployed in the JD e-commerce search engine.
arXiv Detail & Related papers (2023-06-08T07:59:08Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - Unlearning Protected User Attributes in Recommendations with Adversarial
Training [10.268369743620159]
Collaborative filtering algorithms capture underlying consumption patterns, including the ones specific to particular demographics or protected information of users.
These encoded biases can influence the decision of a recommendation system towards further separation of the contents provided to various demographic subgroups.
In this work, we investigate the possibility and challenges of removing specific protected information of users from the learned interaction representations of a RS algorithm.
arXiv Detail & Related papers (2022-06-09T13:36:28Z) - A Cooperative Memory Network for Personalized Task-oriented Dialogue
Systems with Incomplete User Profiles [55.951126447217526]
We study personalized Task-oriented Dialogue Systems without assuming that user profiles are complete.
We propose a Cooperative Memory Network (CoMemNN) that has a novel mechanism to gradually enrich user profiles.
CoMemNN is able to enrich user profiles effectively, which results in an improvement of 3.06% in terms of response selection accuracy.
arXiv Detail & Related papers (2021-02-16T18:05:54Z) - Federated Learning of User Authentication Models [69.93965074814292]
We propose Federated User Authentication (FedUA), a framework for privacy-preserving training of machine learning models.
FedUA adopts federated learning framework to enable a group of users to jointly train a model without sharing the raw inputs.
We show our method is privacy-preserving, scalable with number of users, and allows new users to be added to training without changing the output layer.
arXiv Detail & Related papers (2020-07-09T08:04:38Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
This work investigates the task of unsupervised model personalization, adapted to continually evolving, unlabeled local user images.
We provide a novel Dual User-Adaptation framework (DUA) to explore the problem.
This framework flexibly disentangles user-adaptation into model personalization on the server and local data regularization on the user device.
arXiv Detail & Related papers (2020-03-30T09:35:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.