Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach
- URL: http://arxiv.org/abs/2408.08931v2
- Date: Tue, 10 Dec 2024 03:39:16 GMT
- Title: Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach
- Authors: Zhiwei Li, Guodong Long, Tianyi Zhou, Jing Jiang, Chengqi Zhang,
- Abstract summary: Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy.
Existing FedCF methods typically combine distributed Collaborative Filtering (CF) algorithms with privacy-preserving mechanisms, and then preserve personalized information into a user embedding vector.
This paper proposes a novel personalized FedCF method by preserving users' personalized information into a latent variable and a neural model simultaneously.
- Score: 49.63614966954833
- License:
- Abstract: Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy in a federated setting. Existing FedCF methods typically combine distributed Collaborative Filtering (CF) algorithms with privacy-preserving mechanisms, and then preserve personalized information into a user embedding vector. However, the user embedding is usually insufficient to preserve the rich information of the fine-grained personalization across heterogeneous clients. This paper proposes a novel personalized FedCF method by preserving users' personalized information into a latent variable and a neural model simultaneously. Specifically, we decompose the modeling of user knowledge into two encoders, each designed to capture shared knowledge and personalized knowledge separately. A personalized gating network is then applied to balance personalization and generalization between the global and local encoders. Moreover, to effectively train the proposed framework, we model the CF problem as a specialized Variational AutoEncoder (VAE) task by integrating user interaction vector reconstruction with missing value prediction. The decoder is trained to reconstruct the implicit feedback from items the user has interacted with, while also predicting items the user might be interested in but has not yet interacted with. Experimental results on benchmark datasets demonstrate that the proposed method outperforms other baseline methods, showcasing superior performance. Our code is available at https://github.com/mtics/FedDAE.
Related papers
- Personalized federated learning based on feature fusion [2.943623084019036]
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy.
We propose a personalized federated learning approach called pFedPM.
In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models.
arXiv Detail & Related papers (2024-06-24T12:16:51Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Beyond Similarity: Personalized Federated Recommendation with Composite Aggregation [22.359428566363945]
Federated recommendation aims to collect global knowledge by aggregating local models from massive devices.
Current methods mainly leverage aggregation functions invented by federated vision community to aggregate parameters from similar clients.
We propose a personalized Federated recommendation model with Composite Aggregation (FedCA)
arXiv Detail & Related papers (2024-06-06T10:17:52Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETs is a novel solution by using a Mixture-of-Experts (MoE) framework within a Federated Learning (FL) setup.
Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s)
Our approach can improve accuracy up to 18% in state of the art FL settings, while maintaining competitive zero-shot performance.
arXiv Detail & Related papers (2023-06-14T15:47:52Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
We introduce information-theoretic scores for privacy and utility, which quantify the average performance of an unfaithful user.
We then theoretically characterize primitives in building families of encoding schemes that motivate the use of random deep neural networks.
arXiv Detail & Related papers (2023-03-31T18:03:53Z) - FedHP: Heterogeneous Federated Learning with Privacy-preserving [0.0]
Federated learning is a distributed machine learning environment, which ensures that clients complete collaborative training without sharing private data, only by exchanging parameters.
We propose a novel federated learning method, which consists of the pre-trained model as the backbone and fully connected layers as the head.
By sharing the embedding vector of classes, instead of parameters based on gradient space, clients can better adapt to private data, and it is more efficient in the communication between the server and clients.
arXiv Detail & Related papers (2023-01-27T13:32:17Z) - Dual Personalization on Federated Recommendation [50.4115315992418]
Federated recommendation is a new Internet service architecture that aims to provide privacy-preserving recommendation services in federated settings.
This paper proposes a novel Personalized Federated Recommendation (PFedRec) framework to learn many user-specific lightweight models.
We also propose a new dual personalization mechanism to effectively learn fine-grained personalization on both users and items.
arXiv Detail & Related papers (2023-01-16T05:26:07Z) - FedSPLIT: One-Shot Federated Recommendation System Based on Non-negative
Joint Matrix Factorization and Knowledge Distillation [7.621960305708476]
We present the first unsupervised one-shot federated CF implementation, named FedSPLIT, based on NMF joint factorization.
FedSPLIT can obtain similar results than the state of the art (and even outperform it in certain situations) with a substantial decrease in the number of communications.
arXiv Detail & Related papers (2022-05-04T23:42:14Z) - PFA: Privacy-preserving Federated Adaptation for Effective Model
Personalization [6.66389628571674]
Federated learning (FL) has become a prevalent distributed machine learning paradigm with improved privacy.
This paper introduces a new concept called federated adaptation, targeting at adapting the trained model in a federated manner to achieve better personalization results.
We propose PFA, a framework to accomplish Privacy-preserving Federated Adaptation.
arXiv Detail & Related papers (2021-03-02T08:07:34Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.