BlueSuffix: Reinforced Blue Teaming for Vision-Language Models Against Jailbreak Attacks
- URL: http://arxiv.org/abs/2410.20971v1
- Date: Mon, 28 Oct 2024 12:43:47 GMT
- Title: BlueSuffix: Reinforced Blue Teaming for Vision-Language Models Against Jailbreak Attacks
- Authors: Yunhan Zhao, Xiang Zheng, Lin Luo, Yige Li, Xingjun Ma, Yu-Gang Jiang,
- Abstract summary: Vision-Language Models (VLMs) have been shown to be vulnerable to jailbreak attacks.
We propose a novel blue-team method BlueSuffix that defends the black-box target VLM against jailbreak attacks without compromising its performance.
- Score: 62.58434630634917
- License:
- Abstract: Despite their superb multimodal capabilities, Vision-Language Models (VLMs) have been shown to be vulnerable to jailbreak attacks, which are inference-time attacks that induce the model to output harmful responses with tricky prompts. It is thus essential to defend VLMs against potential jailbreaks for their trustworthy deployment in real-world applications. In this work, we focus on black-box defense for VLMs against jailbreak attacks. Existing black-box defense methods are either unimodal or bimodal. Unimodal methods enhance either the vision or language module of the VLM, while bimodal methods robustify the model through text-image representation realignment. However, these methods suffer from two limitations: 1) they fail to fully exploit the cross-modal information, or 2) they degrade the model performance on benign inputs. To address these limitations, we propose a novel blue-team method BlueSuffix that defends the black-box target VLM against jailbreak attacks without compromising its performance. BlueSuffix includes three key components: 1) a visual purifier against jailbreak images, 2) a textual purifier against jailbreak texts, and 3) a blue-team suffix generator fine-tuned via reinforcement learning for enhancing cross-modal robustness. We empirically show on three VLMs (LLaVA, MiniGPT-4, and Gemini) and two safety benchmarks (MM-SafetyBench and RedTeam-2K) that BlueSuffix outperforms the baseline defenses by a significant margin. Our BlueSuffix opens up a promising direction for defending VLMs against jailbreak attacks.
Related papers
- Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
We propose a novel black-box jailbreak attacking framework that incorporates various LLM-as-Attacker methods.
Our method is designed based on three key observations from existing jailbreaking studies and practices.
arXiv Detail & Related papers (2024-10-31T01:55:33Z) - IDEATOR: Jailbreaking Large Vision-Language Models Using Themselves [67.30731020715496]
We propose a novel jailbreak method named IDEATOR, which autonomously generates malicious image-text pairs for black-box jailbreak attacks.
IDEATOR uses a VLM to create targeted jailbreak texts and pairs them with jailbreak images generated by a state-of-the-art diffusion model.
It achieves a 94% success rate in jailbreaking MiniGPT-4 with an average of only 5.34 queries, and high success rates of 82%, 88%, and 75% when transferred to LLaVA, InstructBLIP, and Meta's Chameleon.
arXiv Detail & Related papers (2024-10-29T07:15:56Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z) - AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large
Language Models [55.748851471119906]
Safety alignment of Large Language Models (LLMs) can be compromised with manual jailbreak attacks and (automatic) adversarial attacks.
Recent studies suggest that defending against these attacks is possible: adversarial attacks generate unlimited but unreadable gibberish prompts, detectable by perplexity-based filters.
We introduce AutoDAN, an interpretable, gradient-based adversarial attack that merges the strengths of both attack types.
arXiv Detail & Related papers (2023-10-23T17:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.