Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models
- URL: http://arxiv.org/abs/2410.23558v1
- Date: Thu, 31 Oct 2024 01:55:33 GMT
- Title: Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models
- Authors: Yiqi Yang, Hongye Fu,
- Abstract summary: We propose a novel black-box jailbreak attacking framework that incorporates various LLM-as-Attacker methods.
Our method is designed based on three key observations from existing jailbreaking studies and practices.
- Score: 0.0
- License:
- Abstract: In this report, we propose a novel black-box jailbreak attacking framework that incorporates various LLM-as-Attacker methods to deliver transferable and powerful jailbreak attacks. Our method is designed based on three key observations from existing jailbreaking studies and practices. First, we consider an ensemble approach should be more effective in exposing the vulnerabilities of an aligned LLM compared to individual attacks. Second, different malicious instructions inherently vary in their jailbreaking difficulty, necessitating differentiated treatment to ensure more efficient attacks. Finally, the semantic coherence of a malicious instruction is crucial for triggering the defenses of an aligned LLM; therefore, it must be carefully disrupted to manipulate its embedding representation, thereby increasing the jailbreak success rate. We validated our approach by participating in the Competition for LLM and Agent Safety 2024, where our team achieved top performance in the Jailbreaking Attack Track.
Related papers
- Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks.
Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40%.
arXiv Detail & Related papers (2024-06-28T11:35:54Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
This paper introduces EasyJailbreak, a unified framework simplifying the construction and evaluation of jailbreak attacks against Large Language Models (LLMs)
It builds jailbreak attacks using four components: Selector, Mutator, Constraint, and Evaluator.
Our validation across 10 distinct LLMs reveals a significant vulnerability, with an average breach probability of 60% under various jailbreaking attacks.
arXiv Detail & Related papers (2024-03-18T18:39:53Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
We propose a novel black-box jailbreak framework for automated red teaming of Large language models.
We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs.
arXiv Detail & Related papers (2024-03-13T11:16:43Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
We study 13 cutting-edge jailbreak methods from four categories, 160 questions from 16 violation categories, and six popular LLMs.
Our experimental results demonstrate that the optimized jailbreak prompts consistently achieve the highest attack success rates.
We discuss the trade-off between the attack performance and efficiency, as well as show that the transferability of the jailbreak prompts is still viable.
arXiv Detail & Related papers (2024-02-08T13:42:50Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
Large language models (LLMs) are vulnerable to adversarial jailbreaks.
We propose an algorithm that generates semantic jailbreaks with only black-box access to an LLM.
arXiv Detail & Related papers (2023-10-12T15:38:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.