Attention Overlap Is Responsible for The Entity Missing Problem in Text-to-image Diffusion Models!
- URL: http://arxiv.org/abs/2410.20972v1
- Date: Mon, 28 Oct 2024 12:43:48 GMT
- Title: Attention Overlap Is Responsible for The Entity Missing Problem in Text-to-image Diffusion Models!
- Authors: Arash Marioriyad, Mohammadali Banayeeanzade, Reza Abbasi, Mohammad Hossein Rohban, Mahdieh Soleymani Baghshah,
- Abstract summary: This study examines three potential causes of the entity-missing problem, focusing on cross-attention dynamics.
We found that reducing overlap in attention maps between entities can effectively minimize the rate of entity missing.
- Score: 3.355491272942994
- License:
- Abstract: Text-to-image diffusion models, such as Stable Diffusion and DALL-E, are capable of generating high-quality, diverse, and realistic images from textual prompts. However, they sometimes struggle to accurately depict specific entities described in prompts, a limitation known as the entity missing problem in compositional generation. While prior studies suggested that adjusting cross-attention maps during the denoising process could alleviate this problem, they did not systematically investigate which objective functions could best address it. This study examines three potential causes of the entity-missing problem, focusing on cross-attention dynamics: (1) insufficient attention intensity for certain entities, (2) overly broad attention spread, and (3) excessive overlap between attention maps of different entities. We found that reducing overlap in attention maps between entities can effectively minimize the rate of entity missing. Specifically, we hypothesize that tokens related to specific entities compete for attention on certain image regions during the denoising process, which can lead to divided attention across tokens and prevent accurate representation of each entity. To address this issue, we introduced four loss functions, Intersection over Union (IoU), center-of-mass (CoM) distance, Kullback-Leibler (KL) divergence, and clustering compactness (CC) to regulate attention overlap during denoising steps without the need for retraining. Experimental results across a wide variety of benchmarks reveal that these proposed training-free methods significantly improve compositional accuracy, outperforming previous approaches in visual question answering (VQA), captioning scores, CLIP similarity, and human evaluations. Notably, these methods improved human evaluation scores by 9% over the best baseline, demonstrating substantial improvements in compositional alignment.
Related papers
- CoCoNO: Attention Contrast-and-Complete for Initial Noise Optimization in Text-to-Image Synthesis [8.386261591495103]
We introduce CoCoNO, a new algorithm that optimize the initial latent by leveraging the complementary information within self-attention and cross-attention maps.
Our method introduces two new loss functions: the attention contrast loss, which minimizes undesirable overlap by ensuring each self-attention segment is exclusively linked to a specific subject's cross attention map, and the attention complete loss, which maximizes the activation within these segments to guarantee that each subject is fully and distinctly represented.
arXiv Detail & Related papers (2024-11-25T08:20:14Z) - Separate-and-Enhance: Compositional Finetuning for Text2Image Diffusion
Models [58.46926334842161]
This work illuminates the fundamental reasons for such misalignment, pinpointing issues related to low attention activation scores and mask overlaps.
We propose two novel objectives, the Separate loss and the Enhance loss, that reduce object mask overlaps and maximize attention scores.
Our method diverges from conventional test-time-adaptation techniques, focusing on finetuning critical parameters, which enhances scalability and generalizability.
arXiv Detail & Related papers (2023-12-10T22:07:42Z) - 2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic
Segmentation [92.17700318483745]
We propose an image-guidance network (IGNet) which builds upon the idea of distilling high level feature information from a domain adapted synthetically trained 2D semantic segmentation network.
IGNet achieves state-of-the-art results for weakly-supervised LiDAR semantic segmentation on ScribbleKITTI, boasting up to 98% relative performance to fully supervised training with only 8% labeled points.
arXiv Detail & Related papers (2023-11-27T07:57:29Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
This paper tackles the challenges for vision modality from a multimodal point of view.
We propose Cross-modal Guidance (CMG) to tackle the redundant information issue and sparse space issue.
To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality.
arXiv Detail & Related papers (2023-10-04T13:44:56Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
We propose to ameliorate the semantic segmentation quality of existing discriminative approaches with a mask prior modeled by a denoising diffusion generative model.
We evaluate the proposed prior modeling with several off-the-shelf segmentors, and our experimental results on ADE20K and Cityscapes demonstrate that our approach could achieve competitively quantitative performance.
arXiv Detail & Related papers (2023-06-02T17:47:01Z) - Visual Perturbation-aware Collaborative Learning for Overcoming the
Language Prior Problem [60.0878532426877]
We propose a novel collaborative learning scheme from the viewpoint of visual perturbation calibration.
Specifically, we devise a visual controller to construct two sorts of curated images with different perturbation extents.
The experimental results on two diagnostic VQA-CP benchmark datasets evidently demonstrate its effectiveness.
arXiv Detail & Related papers (2022-07-24T23:50:52Z) - Dual Cross-Attention Learning for Fine-Grained Visual Categorization and
Object Re-Identification [19.957957963417414]
We propose a dual cross-attention learning (DCAL) algorithm to coordinate with self-attention learning.
First, we propose global-local cross-attention (GLCA) to enhance the interactions between global images and local high-response regions.
Second, we propose pair-wise cross-attention (PWCA) to establish the interactions between image pairs.
arXiv Detail & Related papers (2022-05-04T16:14:26Z) - More Than Just Attention: Learning Cross-Modal Attentions with
Contrastive Constraints [63.08768589044052]
We propose Contrastive Content Re-sourcing ( CCR) and Contrastive Content Swapping ( CCS) constraints to address such limitation.
CCR and CCS constraints supervise the training of attention models in a contrastive learning manner without requiring explicit attention annotations.
Experiments on both Flickr30k and MS-COCO datasets demonstrate that integrating these attention constraints into two state-of-the-art attention-based models improves the model performance.
arXiv Detail & Related papers (2021-05-20T08:48:10Z) - COLA-Net: Collaborative Attention Network for Image Restoration [27.965025010397603]
We propose a novel collaborative attention network (COLA-Net) for image restoration.
Our proposed COLA-Net is able to achieve state-of-the-art performance in both peak signal-to-noise ratio and visual perception.
arXiv Detail & Related papers (2021-03-10T09:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.