Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas
- URL: http://arxiv.org/abs/2503.01773v2
- Date: Tue, 04 Mar 2025 18:01:19 GMT
- Title: Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas
- Authors: Shiqi Chen, Tongyao Zhu, Ruochen Zhou, Jinghan Zhang, Siyang Gao, Juan Carlos Niebles, Mor Geva, Junxian He, Jiajun Wu, Manling Li,
- Abstract summary: We study the spatial reasoning challenge from the lens of mechanistic interpretability.<n>We observe that successful spatial reasoning correlates strongly with the model's ability to align its attention with actual object locations.<n>Motivated by these findings, we propose ADAPTVIS to sharpen the attention on highly relevant regions when confident.
- Score: 52.478956204238315
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Vision Language Models (VLMs) have long struggled with spatial reasoning tasks. Surprisingly, even simple spatial reasoning tasks, such as recognizing "under" or "behind" relationships between only two objects, pose significant challenges for current VLMs. In this work, we study the spatial reasoning challenge from the lens of mechanistic interpretability, diving into the model's internal states to examine the interactions between image and text tokens. By tracing attention distribution over the image through out intermediate layers, we observe that successful spatial reasoning correlates strongly with the model's ability to align its attention distribution with actual object locations, particularly differing between familiar and unfamiliar spatial relationships. Motivated by these findings, we propose ADAPTVIS based on inference-time confidence scores to sharpen the attention on highly relevant regions when confident, while smoothing and broadening the attention window to consider a wider context when confidence is lower. This training-free decoding method shows significant improvement (e.g., up to a 50 absolute point improvement) on spatial reasoning benchmarks such as WhatsUp and VSR with negligible cost. We make code and data publicly available for research purposes at https://github.com/shiqichen17/AdaptVis.
Related papers
- Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
We present a detailed analysis that first delineates the core elements of spatial reasoning.
We then assesses the performance of these models in both synthetic and real-world images.
arXiv Detail & Related papers (2025-03-25T14:34:06Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning.
Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities.
arXiv Detail & Related papers (2025-03-21T17:51:14Z) - Where Am I and What Will I See: An Auto-Regressive Model for Spatial Localization and View Prediction [60.964512894143475]
We present Generative Spatial Transformer ( GST), a novel auto-regressive framework that jointly addresses spatial localization and view prediction.
Our model simultaneously estimates the camera pose from a single image and predicts the view from a new camera pose, effectively bridging the gap between spatial awareness and visual prediction.
arXiv Detail & Related papers (2024-10-24T17:58:05Z) - Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models [61.899791071654654]
We introduce a benchmark, Q-Spatial Bench, with 271 questions across five categories designed for quantitative spatial reasoning.
We investigate the performance of state-of-the-art vision-language models (VLMs) on this task.
We develop a zero-shot prompting technique, SpatialPrompt, that encourages VLMs to answer quantitative spatial questions using reference objects as visual cues.
arXiv Detail & Related papers (2024-09-15T16:45:42Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
The ability to understand and reason about spatial relationships between objects in images is an important component of visual reasoning.
We extend the previously released What'sUp dataset and propose a novel comprehensive evaluation for spatial relationship understanding.
arXiv Detail & Related papers (2024-06-19T06:15:26Z) - Improving Vision-and-Language Reasoning via Spatial Relations Modeling [30.477235227733928]
Visual commonsense reasoning (VCR) is a challenging multi-modal task.
The proposed method can guide the representations to maintain more spatial context.
We achieve the state-of-the-art results on VCR and two other vision-and-language reasoning tasks VQA, and NLVR.
arXiv Detail & Related papers (2023-11-09T11:54:55Z) - Spotlight Attention: Robust Object-Centric Learning With a Spatial
Locality Prior [88.9319150230121]
Object-centric vision aims to construct an explicit representation of the objects in a scene.
We incorporate a spatial-locality prior into state-of-the-art object-centric vision models.
We obtain significant improvements in segmenting objects in both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-31T04:35:50Z) - Visual Spatial Reasoning [35.5155400193075]
We present a dataset containing more than 10k natural text-image pairs with 66 types of spatial relations in English.
We show how the dataset includes challenging linguistic phenomena, such as varying reference frames.
We demonstrate a large gap between human and model performance: the human ceiling is above 95%, while state-of-the-art models only achieve around 70%.
arXiv Detail & Related papers (2022-04-30T23:03:49Z) - Bi-directional Object-context Prioritization Learning for Saliency
Ranking [60.62461793691836]
Existing approaches focus on learning either object-object or object-scene relations.
We observe that spatial attention works concurrently with object-based attention in the human visual recognition system.
We propose a novel bi-directional method to unify spatial attention and object-based attention for saliency ranking.
arXiv Detail & Related papers (2022-03-17T16:16:03Z) - Weakly Supervised Relative Spatial Reasoning for Visual Question
Answering [38.05223339919346]
We evaluate the faithfulness of V&L models to such geometric understanding.
We train V&L with weak supervision from off-the-shelf depth estimators.
This leads to considerable improvements in accuracy for the "GQA" visual question answering challenge.
arXiv Detail & Related papers (2021-09-04T21:29:06Z) - Spatially Aware Multimodal Transformers for TextVQA [61.01618988620582]
We study the TextVQA task, i.e., reasoning about text in images to answer a question.
Existing approaches are limited in their use of spatial relations.
We propose a novel spatially aware self-attention layer.
arXiv Detail & Related papers (2020-07-23T17:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.