論文の概要: Large Language Model-Guided Prediction Toward Quantum Materials Synthesis
- arxiv url: http://arxiv.org/abs/2410.20976v1
- Date: Mon, 28 Oct 2024 12:50:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:43.429986
- Title: Large Language Model-Guided Prediction Toward Quantum Materials Synthesis
- Title(参考訳): 量子材料合成に向けた大規模言語モデル誘導予測
- Authors: Ryotaro Okabe, Zack West, Abhijatmedhi Chotrattanapituk, Mouyang Cheng, Denisse Córdova Carrizales, Weiwei Xie, Robert J. Cava, Mingda Li,
- Abstract要約: 無機材料の合成経路を予測するために,大規模言語モデル (LLM) を用いたフレームワークを提案する。
LHS2RHS, RHS2LHS, RHS2LHS, RHS2LHS, TGT2CEQの3つのモデルからなる。
- 参考スコア(独自算出の注目度): 1.3615110145289984
- License:
- Abstract: The synthesis of inorganic crystalline materials is essential for modern technology, especially in quantum materials development. However, designing efficient synthesis workflows remains a significant challenge due to the precise experimental conditions and extensive trial and error. Here, we present a framework using large language models (LLMs) to predict synthesis pathways for inorganic materials, including quantum materials. Our framework contains three models: LHS2RHS, predicting products from reactants; RHS2LHS, predicting reactants from products; and TGT2CEQ, generating full chemical equations for target compounds. Fine-tuned on a text-mined synthesis database, our model raises accuracy from under 40% with pretrained models, to under 80% using conventional fine-tuning, and further to around 90% with our proposed generalized Tanimoto similarity, while maintaining robust to additional synthesis steps. Our model further demonstrates comparable performance across materials with varying degrees of quantumness quantified using quantum weight, indicating that LLMs offer a powerful tool to predict balanced chemical equations for quantum materials discovery.
- Abstract(参考訳): 無機結晶材料の合成は現代技術、特に量子材料開発に不可欠である。
しかし、正確な実験条件と広範な試行錯誤のため、効率的な合成ワークフローの設計は依然として重要な課題である。
本稿では、大規模言語モデル(LLM)を用いて、量子材料を含む無機物質の合成経路を予測するフレームワークを提案する。
LHS2RHS, RHS2LHS, RHS2LHS, RHS2LHS, TGT2CEQの3つのモデルからなる。
テキストマイニング合成データベース上でのファインチューニングにより,事前訓練したモデルでは40%未満の精度,従来のファインチューニングでは80%以下に,さらに一般化された谷本類似度では90%程度まで精度を向上する。
我々のモデルはさらに、量子量を用いて量子化の度合いが異なる物質に対して比較性能を実証し、LLMが量子材料発見のための平衡化学方程式を予測するための強力なツールを提供することを示す。
関連論文リスト
- BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chemは150億のパラメータを持つ大規模な言語モデルであり、再合成予測の強化に最適化されている。
我々のモデルは幅広い化学知識を捉え、反応条件の正確な予測を可能にする。
この開発により、化学者は新しい化合物を十分に扱うことができ、医薬品製造と材料科学の革新サイクルを早める可能性がある。
論文 参考訳(メタデータ) (2024-08-19T05:17:40Z) - Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation [50.639325453203504]
MM-RCRは、化学反応レコメンデーション(RCR)のためのSMILES、反応グラフ、テキストコーパスから統一的な反応表現を学習するテキスト拡張マルチモーダルLLMである。
この結果から,MM-RCRは2つのオープンベンチマークデータセット上で最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-07-21T12:27:26Z) - Fine-Tuned Language Models Generate Stable Inorganic Materials as Text [57.01994216693825]
テキストエンコードされた原子構造データに基づく微調整された大規模言語モデルは、実装が簡単で信頼性が高い。
我々の最強モデルは、CDVAEの約2倍の速度で準安定であると予測された物質を生成することができる。
テキストプロンプト固有の柔軟性のため、我々のモデルは安定物質を無条件に生成するために同時に使用することができる。
論文 参考訳(メタデータ) (2024-02-06T20:35:28Z) - Synthetic pre-training for neural-network interatomic potentials [0.0]
本研究は,ニューラルネットワークを用いた原子間ポテンシャルモデルにおいて,既存の機械学習ポテンシャルと大規模に比較して得られる合成原子構造データが有用な事前学習課題であることを示す。
一度大きな合成データセットで事前訓練すると、これらのモデルはより小さく、量子力学的なモデルに微調整され、計算の練習における数値的精度と安定性が向上する。
論文 参考訳(メタデータ) (2023-07-24T17:16:24Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Extracting Structured Seed-Mediated Gold Nanorod Growth Procedures from
Literature with GPT-3 [52.59930033705221]
1,137枚の紙から抽出した11,644個のエンティティのデータセットを作成した。
1,137枚の紙から抽出した11,644個のエンティティのデータセットを作成した。
論文 参考訳(メタデータ) (2023-04-26T22:21:33Z) - Precursor recommendation for inorganic synthesis by machine learning
materials similarity from scientific literature [0.0]
我々は、29,900個の固体合成レシピの知識ベースを使用して、新規なターゲット物質の合成を推奨する前駆体を自動的に学習する。
データ駆動型アプローチは材料の化学的類似性を学習し、類似材料の前駆的な合成手順に新しいターゲットの合成を言及する。
我々のアプローチは、何十年もの合成データを数学的形式で捉え、レコメンデーションエンジンや自律的な研究室での使用を可能にします。
論文 参考訳(メタデータ) (2023-02-05T04:57:59Z) - Machine-Learning-Optimized Perovskite Nanoplatelet Synthesis [55.41644538483948]
総合成量200のCsPbBr3ナノプレート(NPL)の品質向上のためのアルゴリズムを開発した。
このアルゴリズムは、前駆率に基づいて、NPL分散のPL放出最大値を予測することができる。
論文 参考訳(メタデータ) (2022-10-18T11:54:11Z) - Predictive Synthesis of Quantum Materials by Probabilistic Reinforcement
Learning [1.4680035572775534]
本研究では, 半超電導単層MoS$_2$の量子材料に対する最適合成スケジュールの予測に強化学習を用いる。
このモデルは、多相ヘテロ構造を含む複雑な構造の合成のためのプロファイルを予測するために拡張することができる。
論文 参考訳(メタデータ) (2020-09-14T20:50:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。