Large Language Model-Guided Prediction Toward Quantum Materials Synthesis
- URL: http://arxiv.org/abs/2410.20976v1
- Date: Mon, 28 Oct 2024 12:50:46 GMT
- Title: Large Language Model-Guided Prediction Toward Quantum Materials Synthesis
- Authors: Ryotaro Okabe, Zack West, Abhijatmedhi Chotrattanapituk, Mouyang Cheng, Denisse Córdova Carrizales, Weiwei Xie, Robert J. Cava, Mingda Li,
- Abstract summary: We present a framework using large language models (LLMs) to predict synthesis pathways for inorganic materials.
Our framework contains three models: LHS2RHS, predicting products from reactants; RHS2LHS, predicting reactants from products; and TGT2CEQ, generating full chemical equations for target compounds.
- Score: 1.3615110145289984
- License:
- Abstract: The synthesis of inorganic crystalline materials is essential for modern technology, especially in quantum materials development. However, designing efficient synthesis workflows remains a significant challenge due to the precise experimental conditions and extensive trial and error. Here, we present a framework using large language models (LLMs) to predict synthesis pathways for inorganic materials, including quantum materials. Our framework contains three models: LHS2RHS, predicting products from reactants; RHS2LHS, predicting reactants from products; and TGT2CEQ, generating full chemical equations for target compounds. Fine-tuned on a text-mined synthesis database, our model raises accuracy from under 40% with pretrained models, to under 80% using conventional fine-tuning, and further to around 90% with our proposed generalized Tanimoto similarity, while maintaining robust to additional synthesis steps. Our model further demonstrates comparable performance across materials with varying degrees of quantumness quantified using quantum weight, indicating that LLMs offer a powerful tool to predict balanced chemical equations for quantum materials discovery.
Related papers
- BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation [50.639325453203504]
MM-RCR is a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR)
Our results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets.
arXiv Detail & Related papers (2024-07-21T12:27:26Z) - Fine-Tuned Language Models Generate Stable Inorganic Materials as Text [57.01994216693825]
Fine-tuning large language models on text-encoded atomistic data is simple to implement yet reliable.
We show that our strongest model can generate materials predicted to be metastable at about twice the rate of CDVAE.
Because of text prompting's inherent flexibility, our models can simultaneously be used for unconditional generation of stable material.
arXiv Detail & Related papers (2024-02-06T20:35:28Z) - Synthetic pre-training for neural-network interatomic potentials [0.0]
We show that synthetic atomistic data, themselves obtained at scale with an existing machine learning potential, constitute a useful pre-training task for neural-network interatomic potential models.
Once pre-trained with a large synthetic dataset, these models can be fine-tuned on a much smaller, quantum-mechanical one, improving numerical accuracy and stability in computational practice.
arXiv Detail & Related papers (2023-07-24T17:16:24Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Extracting Structured Seed-Mediated Gold Nanorod Growth Procedures from
Literature with GPT-3 [52.59930033705221]
We present a dataset of 11,644 entities extracted from 1,137 papers, resulting in 268 papers with at least one complete seed-mediated gold nanorod growth procedure and outcome for a total of 332 complete procedures.
We present a dataset of 11,644 entities extracted from 1,137 papers, resulting in papers with at least one complete seed-mediated gold nanorod growth procedure and outcome for a total of 332 complete procedures.
arXiv Detail & Related papers (2023-04-26T22:21:33Z) - Precursor recommendation for inorganic synthesis by machine learning
materials similarity from scientific literature [0.0]
We use a knowledge base of 29,900 solid-state synthesis recipes to automatically learn which precursors to recommend for the synthesis of a novel target material.
The data-driven approach learns chemical similarity of materials and refers the synthesis of a new target to precedent synthesis procedures of similar materials.
Our approach captures decades of synthesis data in a mathematical form, making it accessible for use in recommendation engines and autonomous laboratories.
arXiv Detail & Related papers (2023-02-05T04:57:59Z) - Machine-Learning-Optimized Perovskite Nanoplatelet Synthesis [55.41644538483948]
We develop an algorithm to improve the quality of CsPbBr3 nanoplatelets (NPLs) using only 200 total syntheses.
The algorithm can predict the resulting PL emission maxima of the NPL dispersions based on the precursor ratios.
arXiv Detail & Related papers (2022-10-18T11:54:11Z) - Predictive Synthesis of Quantum Materials by Probabilistic Reinforcement
Learning [1.4680035572775534]
We use reinforcement learning to predict optimal synthesis schedules for a prototypical quantum material, semiconducting monolayer MoS$_2$.
The model can be extended to predict profiles for synthesis of complex structures including multi-phase heterostructures.
arXiv Detail & Related papers (2020-09-14T20:50:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.