Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation
- URL: http://arxiv.org/abs/2407.15141v1
- Date: Sun, 21 Jul 2024 12:27:26 GMT
- Title: Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation
- Authors: Yu Zhang, Ruijie Yu, Kaipeng Zeng, Ding Li, Feng Zhu, Xiaokang Yang, Yaohui Jin, Yanyan Xu,
- Abstract summary: MM-RCR is a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR)
Our results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets.
- Score: 50.639325453203504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-throughput reaction condition (RC) screening is fundamental to chemical synthesis. However, current RC screening suffers from laborious and costly trial-and-error workflows. Traditional computer-aided synthesis planning (CASP) tools fail to find suitable RCs due to data sparsity and inadequate reaction representations. Nowadays, large language models (LLMs) are capable of tackling chemistry-related problems, such as molecule design, and chemical logic Q\&A tasks. However, LLMs have not yet achieved accurate predictions of chemical reaction conditions. Here, we present MM-RCR, a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR). To train MM-RCR, we construct 1.2 million pair-wised Q\&A instruction datasets. Our experimental results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets and exhibits strong generalization capabilities on out-of-domain (OOD) and High-Throughput Experimentation (HTE) datasets. MM-RCR has the potential to accelerate high-throughput condition screening in chemical synthesis.
Related papers
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
This paper introduces modelname, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks.
By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism.
We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction.
arXiv Detail & Related papers (2024-11-26T17:41:44Z) - log-RRIM: Yield Prediction via Local-to-global Reaction Representation Learning and Interaction Modeling [6.310759215182946]
log-RRIM is an innovative graph transformer-based framework designed for predicting chemical reaction yields.
Our approach implements a unique local-to-global reaction representation learning strategy.
Its advanced modeling of reactant-reagent interactions and sensitivity to small molecular fragments make it a valuable tool for reaction planning and optimization in chemical synthesis.
arXiv Detail & Related papers (2024-10-20T18:35:56Z) - ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
Existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.
ChemEval identifies 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks.
Results show that while general LLMs excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge.
arXiv Detail & Related papers (2024-09-21T02:50:43Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Contextual Molecule Representation Learning from Chemical Reaction
Knowledge [24.501564702095937]
We introduce REMO, a self-supervised learning framework that takes advantage of well-defined atom-combination rules in common chemistry.
REMO pre-trains graph/Transformer encoders on 1.7 million known chemical reactions in the literature.
arXiv Detail & Related papers (2024-02-21T12:58:40Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-X automates the reaction condition recommendation (RCR) task in chemical synthesis with retrieval-augmented generation (RAG) technology.
Chemist-X interrogates online molecular databases and distills critical data from the latest literature database.
Chemist-X considerably reduces chemists' workload and allows them to focus on more fundamental and creative problems.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - ReLM: Leveraging Language Models for Enhanced Chemical Reaction
Prediction [26.342666819515774]
ReLM is a framework that leverages the chemical knowledge encoded in language models (LMs) to assist Graph Neural Networks (GNNs)
Our experimental results demonstrate that ReLM improves the performance of state-of-the-art GNN-based methods across various chemical reaction datasets.
arXiv Detail & Related papers (2023-10-20T15:33:23Z) - Root-aligned SMILES for Molecular Retrosynthesis Prediction [31.818364437526885]
Retrosynthesis prediction is a fundamental problem in organic synthesis, where the task is to discover precursor molecules that can be used to synthesize a target molecule.
A popular paradigm of existing computational retrosynthesis methods formulate retrosynthesis prediction as a sequence-to-sequence translation problem.
We propose the root-aligned SMILES(R-SMILES), which specifies a tightly aligned one-to-one mapping between the product and the reactant SMILES.
arXiv Detail & Related papers (2022-03-22T03:50:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.