Overview of Current Challenges in Multi-Architecture Software Engineering and a Vision for the Future
- URL: http://arxiv.org/abs/2410.20984v1
- Date: Mon, 28 Oct 2024 13:03:09 GMT
- Title: Overview of Current Challenges in Multi-Architecture Software Engineering and a Vision for the Future
- Authors: Piotr Sowinski, Ignacio Lacalle, Rafael Vano, Carlos E. Palau, Maria Ganzha, Marcin Paprzycki,
- Abstract summary: The presented system architecture is based on the concept of dynamic, knowledge graph-based WebAssembly Twins.
The resulting systems are to possess advanced autonomous capabilities, with full transparency and controllability by the end user.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The landscape of computing technologies is changing rapidly, straining existing software engineering practices and tools. The growing need to produce and maintain increasingly complex multi-architecture applications makes it crucial to effectively accelerate and automate software engineering processes. At the same time, artificial intelligence (AI) tools are expected to work hand-in-hand with human developers. Therefore, it becomes critical to model the software accurately, so that the AI and humans can share a common understanding of the problem. In this contribution, firstly, an in-depth overview of these interconnected challenges faced by modern software engineering is presented. Secondly, to tackle them, a novel architecture based on the emerging WebAssembly technology and the latest advancements in neuro-symbolic AI, autonomy, and knowledge graphs is proposed. The presented system architecture is based on the concept of dynamic, knowledge graph-based WebAssembly Twins, which model the software throughout all stages of its lifecycle. The resulting systems are to possess advanced autonomous capabilities, with full transparency and controllability by the end user. The concept takes a leap beyond the current software engineering approaches, addressing some of the most urgent issues in the field. Finally, the efforts towards realizing the proposed approach as well as future research directions are summarized.
Related papers
- Personalized Artificial General Intelligence (AGI) via Neuroscience-Inspired Continuous Learning Systems [3.764721243654025]
Current approaches largely depend on expanding model parameters, which improves task-specific performance but falls short in enabling continuous, adaptable, and generalized learning.
This paper reviews the state of continual learning and neuroscience-inspired AI, and proposes a novel architecture for Personalized AGI that integrates brain-like learning mechanisms for edge deployment.
Building on these insights, we outline an AI architecture that features complementary fast-and-slow learning modules, synaptic self-optimization, and memory-efficient model updates to support on-device lifelong adaptation.
arXiv Detail & Related papers (2025-04-27T16:10:17Z) - Artificial Intelligence for Software Architecture: Literature Review and the Road Ahead [8.68898878009242]
This paper presents a forward-looking vision for artificial intelligence-driven software architecture.
We examine how artificial intelligence can automate architectural design, support quantitative trade-off analyses, and continuously update architectural documentation.
The resulting roadmap outlines 14 current artificial intelligence contributions to software architecture, identifies six artificial intelligence-specific challenges in supporting architectural tasks, and reveals six avenues for future improvement.
arXiv Detail & Related papers (2025-04-06T03:00:07Z) - Challenges and Paths Towards AI for Software Engineering [55.95365538122656]
We discuss progress in AI for software engineering in threefold manner.
First, we provide a structured taxonomy of concrete tasks in AI for software engineering.
Second, we outline several key bottlenecks that limit current approaches.
arXiv Detail & Related papers (2025-03-28T17:17:57Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.
The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications [17.624263707781655]
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management.
This article delves into the foundational concepts and cutting-edge developments in these fields.
By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management.
arXiv Detail & Related papers (2024-10-02T06:24:51Z) - Next-Gen Software Engineering: AI-Assisted Big Models [0.0]
This paper aims to facilitate a synthesis between models and AI in software engineering.
The paper provides an overview of the current status of AI-assisted software engineering.
A vision of AI-assisted Big Models in SE is put forth, with the aim of capitalising on the advantages inherent to both approaches.
arXiv Detail & Related papers (2024-09-26T16:49:57Z) - Abstraction Engineering [6.091612632147657]
Abstraction is already used across many disciplines involved in software development.
This paper looks at these new challenges and proposes to address them through the lens of Abstraction.
We discuss the foundations of Abstraction Engineering, identify key challenges, highlight the research questions that help address these challenges, and create a roadmap for future research.
arXiv Detail & Related papers (2024-08-26T07:56:32Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
With the advancements in deep learning and edge computing, VAD has made significant progress.
This article offers an exhaustive tutorial for novices in NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
We present insights from SE researchers and practitioners on challenges and solutions regarding diversity and inclusion in SE.
We share potential utopian and dystopian visions of the future and provide future research directions and implications for academia and industry.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - Artificial Intelligence Impact On The Labour Force -- Searching For The
Analytical Skills Of The Future Software Engineers [0.0]
This systematic literature review aims to investigate the impact of artificial intelligence on the labour force in software engineering.
It focuses on the skills needed for future software engineers, the impact of AI on the demand for software engineering skills, and the future of work for software engineers.
arXiv Detail & Related papers (2023-02-26T03:49:53Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Enabling Design Methodologies and Future Trends forEdge AI:
Specialization and Co-design [37.54971466190214]
We provide a comprehensive survey of the latest enabling design methodologies that span the entire edge AI development stack.
We suggest that the key methodologies for effective edge AI development are single-layer specialization and cross-layer co-design.
arXiv Detail & Related papers (2021-03-25T16:29:55Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.