A Stein Gradient Descent Approach for Doubly Intractable Distributions
- URL: http://arxiv.org/abs/2410.21021v1
- Date: Mon, 28 Oct 2024 13:42:27 GMT
- Title: A Stein Gradient Descent Approach for Doubly Intractable Distributions
- Authors: Heesang Lee, Songhee Kim, Bokgyeong Kang, Jaewoo Park,
- Abstract summary: We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions.
The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.
- Score: 5.63014864822787
- License:
- Abstract: Bayesian inference for doubly intractable distributions is challenging because they include intractable terms, which are functions of parameters of interest. Although several alternatives have been developed for such models, they are computationally intensive due to repeated auxiliary variable simulations. We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions. Through an efficient gradient approximation, our MC-SVGD approach rapidly transforms an arbitrary reference distribution to approximate the posterior distribution of interest, without necessitating any predefined variational distribution class for the posterior. Such a transport map is obtained by minimizing Kullback-Leibler divergence between the transformed and posterior distributions in a reproducing kernel Hilbert space (RKHS). We also investigate the convergence rate of the proposed method. We illustrate the application of the method to challenging examples, including a Potts model, an exponential random graph model, and a Conway--Maxwell--Poisson regression model. The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.
Related papers
- HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
This paper builds on the log transform known as the Cole-Hopf transform in Brownian motion contexts.
We develop a new algorithm, named the HJ-sampler, for inference for the inverse problem of a differential equation with given terminal observations.
arXiv Detail & Related papers (2024-09-15T05:30:54Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Unbiased Kinetic Langevin Monte Carlo with Inexact Gradients [0.8749675983608172]
We present an unbiased method for posterior means based on kinetic Langevin dynamics.
Our proposed estimator is unbiased, attains finite variance, and satisfies a central limit theorem.
Our results demonstrate that in large-scale applications, the unbiased algorithm we present can be 2-3 orders of magnitude more efficient than the gold-standard" randomized Hamiltonian Monte Carlo.
arXiv Detail & Related papers (2023-11-08T21:19:52Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Variational Gaussian filtering via Wasserstein gradient flows [6.023171219551961]
We present a novel approach to approximate Gaussian and mixture-of-Gaussians filtering.
Our method relies on a variational approximation via a gradient-flow representation.
arXiv Detail & Related papers (2023-03-11T12:22:35Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Stein Variational Inference for Discrete Distributions [70.19352762933259]
We propose a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions.
Our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo.
We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN)
In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions.
arXiv Detail & Related papers (2020-03-01T22:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.