Palisade -- Prompt Injection Detection Framework
- URL: http://arxiv.org/abs/2410.21146v1
- Date: Mon, 28 Oct 2024 15:47:03 GMT
- Title: Palisade -- Prompt Injection Detection Framework
- Authors: Sahasra Kokkula, Somanathan R, Nandavardhan R, Aashishkumar, G Divya,
- Abstract summary: Large Language Models are vulnerable to malicious prompt injection attacks.
This paper proposes a novel NLP based approach for prompt injection detection.
It emphasizes accuracy and optimization through a layered input screening process.
- Score: 0.9620910657090188
- License:
- Abstract: The advent of Large Language Models LLMs marks a milestone in Artificial Intelligence, altering how machines comprehend and generate human language. However, LLMs are vulnerable to malicious prompt injection attacks, where crafted inputs manipulate the models behavior in unintended ways, compromising system integrity and causing incorrect outcomes. Conventional detection methods rely on static, rule-based approaches, which often fail against sophisticated threats like abnormal token sequences and alias substitutions, leading to limited adaptability and higher rates of false positives and false negatives.This paper proposes a novel NLP based approach for prompt injection detection, emphasizing accuracy and optimization through a layered input screening process. In this framework, prompts are filtered through three distinct layers rule-based, ML classifier, and companion LLM before reaching the target model, thereby minimizing the risk of malicious interaction.Tests show the ML classifier achieves the highest accuracy among individual layers, yet the multi-layer framework enhances overall detection accuracy by reducing false negatives. Although this increases false positives, it minimizes the risk of overlooking genuine injected prompts, thus prioritizing security.This multi-layered detection approach highlights LLM vulnerabilities and provides a comprehensive framework for future research, promoting secure interactions between humans and AI systems.
Related papers
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks.
We introduce the concept of the distraction effect, where specific attention heads shift focus from the original instruction to the injected instruction.
We propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks.
arXiv Detail & Related papers (2024-11-01T04:05:59Z) - Embedding-based classifiers can detect prompt injection attacks [5.820776057182452]
Large Language Models (LLMs) are vulnerable to adversarial attacks, particularly prompt injection attacks.
We propose a novel approach based on embedding-based Machine Learning (ML) classifiers to protect LLM-based applications against this severe threat.
arXiv Detail & Related papers (2024-10-29T17:36:59Z) - Fine-tuned Large Language Models (LLMs): Improved Prompt Injection Attacks Detection [6.269725911814401]
Large language models (LLMs) are becoming a popular tool as they have significantly advanced in their capability to tackle a wide range of language-based tasks.
However, LLMs applications are highly vulnerable to prompt injection attacks, which poses a critical problem.
This project explores the security vulnerabilities in relation to prompt injection attacks.
arXiv Detail & Related papers (2024-10-28T00:36:21Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
Large Language Models (LLMs) are vulnerable to adversarial threats.
This paper presents an innovative defensive strategy, given white box access to an LLM.
We apply a novel methodology for analyzing distinctive activation patterns in the residual streams for attack prompt classification.
arXiv Detail & Related papers (2024-06-05T13:06:33Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free object detection (SFOD) aims to adapt a source-trained detector to an unlabeled target domain without access to the labeled source data.
Current SFOD methods utilize a threshold-based pseudo-label approach in the adaptation phase.
We propose a new approach to take full advantage of pseudo-labels by introducing high and low confidence thresholds.
arXiv Detail & Related papers (2023-10-19T12:59:55Z) - Evaluation of Parameter-based Attacks against Embedded Neural Networks
with Laser Injection [1.2499537119440245]
This work practically reports, for the first time, a successful variant of the Bit-Flip Attack, BFA, on a 32-bit Cortex-M microcontroller using laser fault injection.
To avoid unrealistic brute-force strategies, we show how simulations help selecting the most sensitive set of bits from the parameters taking into account the laser fault model.
arXiv Detail & Related papers (2023-04-25T14:48:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.