SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications
- URL: http://arxiv.org/abs/2410.21194v1
- Date: Mon, 28 Oct 2024 16:36:58 GMT
- Title: SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications
- Authors: Ilias Diakonikolas, Samuel B. Hopkins, Ankit Pensia, Stefan Tiegel,
- Abstract summary: We prove that there is a universal constant $C>0$ so that for every $d inmathbb N$, every centered subgaussian distribution $mathcal D$ on $mathbb Rd$, and every even $p inmathbb N$, the $d-optimal inmathbb N$, and the $d-optimal inmathbb N$.
This establishes that every subgaussian distribution is emphS-certifiably subgaussian -- a condition that yields efficient learning algorithms for a wide variety of
- Score: 37.208622097149714
- License:
- Abstract: We prove that there is a universal constant $C>0$ so that for every $d \in \mathbb N$, every centered subgaussian distribution $\mathcal D$ on $\mathbb R^d$, and every even $p \in \mathbb N$, the $d$-variate polynomial $(Cp)^{p/2} \cdot \|v\|_{2}^p - \mathbb E_{X \sim \mathcal D} \langle v,X\rangle^p$ is a sum of square polynomials. This establishes that every subgaussian distribution is \emph{SoS-certifiably subgaussian} -- a condition that yields efficient learning algorithms for a wide variety of high-dimensional statistical tasks. As a direct corollary, we obtain computationally efficient algorithms with near-optimal guarantees for the following tasks, when given samples from an arbitrary subgaussian distribution: robust mean estimation, list-decodable mean estimation, clustering mean-separated mixture models, robust covariance-aware mean estimation, robust covariance estimation, and robust linear regression. Our proof makes essential use of Talagrand's generic chaining/majorizing measures theorem.
Related papers
- Which exceptional low-dimensional projections of a Gaussian point cloud can be found in polynomial time? [8.74634652691576]
We study the subset $mathscrF_m,alpha$ of distributions that can be realized by a class of iterative algorithms.
Non-rigorous methods from statistical physics yield an indirect characterization of $mathscrF_m,alpha$ in terms of a generalized Parisi formula.
arXiv Detail & Related papers (2024-06-05T05:54:56Z) - Efficient Certificates of Anti-Concentration Beyond Gaussians [15.709968227246453]
This work presents a new (and arguably the most natural) formulation for anti-concentration.
We give quasi-polynomial time verifiable sum-of-squares certificates of anti-concentration that hold for a wide class of non-Gaussian distributions.
Our approach constructs a canonical integer program for anti-concentration and analysis a sum-of-squares relaxation of it, independent of the intended application.
arXiv Detail & Related papers (2024-05-23T22:13:44Z) - Efficient Estimation of the Central Mean Subspace via Smoothed Gradient Outer Products [12.047053875716506]
We consider the problem of sufficient dimension reduction for multi-index models.
We show that a fast parametric convergence rate of form $C_d cdot n-1/2$ is achievable.
arXiv Detail & Related papers (2023-12-24T12:28:07Z) - Robust Mean Estimation Without Moments for Symmetric Distributions [7.105512316884493]
We show that for a large class of symmetric distributions, the same error as in the Gaussian setting can be achieved efficiently.
We propose a sequence of efficient algorithms that approaches this optimal error.
Our algorithms are based on a generalization of the well-known filtering technique.
arXiv Detail & Related papers (2023-02-21T17:52:23Z) - Replicable Clustering [57.19013971737493]
We propose algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their counterparts in a black-box manner.
We also provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
arXiv Detail & Related papers (2023-02-20T23:29:43Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Non-Gaussian Component Analysis via Lattice Basis Reduction [56.98280399449707]
Non-Gaussian Component Analysis (NGCA) is a distribution learning problem.
We provide an efficient algorithm for NGCA in the regime that $A$ is discrete or nearly discrete.
arXiv Detail & Related papers (2021-12-16T18:38:02Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.