Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
- URL: http://arxiv.org/abs/2410.21220v1
- Date: Mon, 28 Oct 2024 17:04:18 GMT
- Title: Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
- Authors: Zhixin Zhang, Yiyuan Zhang, Xiaohan Ding, Xiangyu Yue,
- Abstract summary: Vision Search Assistant is a novel framework that facilitates collaboration between vision-language models and web agents.
By integrating visual and textual representations through this collaboration, the model can provide informed responses even when the image is novel to the system.
- Score: 18.602869210526848
- License:
- Abstract: Search engines enable the retrieval of unknown information with texts. However, traditional methods fall short when it comes to understanding unfamiliar visual content, such as identifying an object that the model has never seen before. This challenge is particularly pronounced for large vision-language models (VLMs): if the model has not been exposed to the object depicted in an image, it struggles to generate reliable answers to the user's question regarding that image. Moreover, as new objects and events continuously emerge, frequently updating VLMs is impractical due to heavy computational burdens. To address this limitation, we propose Vision Search Assistant, a novel framework that facilitates collaboration between VLMs and web agents. This approach leverages VLMs' visual understanding capabilities and web agents' real-time information access to perform open-world Retrieval-Augmented Generation via the web. By integrating visual and textual representations through this collaboration, the model can provide informed responses even when the image is novel to the system. Extensive experiments conducted on both open-set and closed-set QA benchmarks demonstrate that the Vision Search Assistant significantly outperforms the other models and can be widely applied to existing VLMs.
Related papers
- Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems.
These models have been shown to be highly capable, but also lacking some basic visual understanding skills.
This paper sets out to understand the limitations of SoTA VLMs on fundamental visual tasks.
arXiv Detail & Related papers (2024-08-13T08:26:32Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts [65.04791072532106]
We present LoCoVQA, a benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs)
LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts.
This test assesses how well VLMs can ignore irrelevant information when answering queries.
arXiv Detail & Related papers (2024-06-24T17:58:03Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2 is an end-to-end generalist multimodal large model (MLLM)
It unifies visual perception, understanding, and generation within a single framework.
arXiv Detail & Related papers (2024-06-12T16:44:50Z) - InsightSee: Advancing Multi-agent Vision-Language Models for Enhanced Visual Understanding [12.082379948480257]
This paper proposes InsightSee, a multi-agent framework to enhance vision-language models' capabilities in handling complex visual understanding scenarios.
The framework comprises a description agent, two reasoning agents, and a decision agent, which are integrated to refine the process of visual information interpretation.
The proposed framework outperforms state-of-the-art algorithms in 6 out of 9 benchmark tests, with a substantial advancement in multimodal understanding.
arXiv Detail & Related papers (2024-05-31T13:56:55Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Question Aware Vision Transformer for Multimodal Reasoning [14.188369270753347]
We introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning.
It embeds question awareness directly within the vision encoder.
This integration results in dynamic visual features focusing on relevant image aspects to the posed question.
arXiv Detail & Related papers (2024-02-08T08:03:39Z) - Veagle: Advancements in Multimodal Representation Learning [0.0]
This paper introduces a novel approach to enhance the multimodal capabilities of existing models.
Our proposed model Veagle, incorporates a unique mechanism inspired by the successes and insights of previous works.
Our results indicate a improvement of 5-6 % in performance, with Veagle outperforming existing models by a notable margin.
arXiv Detail & Related papers (2024-01-18T12:45:25Z) - InternVL: Scaling up Vision Foundation Models and Aligning for Generic
Visual-Linguistic Tasks [92.03764152132315]
We design a large-scale vision-language foundation model (InternVL), which scales up the vision foundation model to 6 billion parameters.
This model can be broadly applied to and achieve state-of-the-art performance on 32 generic visual-linguistic benchmarks.
It has powerful visual capabilities and can be a good alternative to the ViT-22B.
arXiv Detail & Related papers (2023-12-21T18:59:31Z) - Vision-Language Models for Vision Tasks: A Survey [62.543250338410836]
Vision-Language Models (VLMs) learn rich vision-language correlation from web-scale image-text pairs.
This paper provides a systematic review of visual language models for various visual recognition tasks.
arXiv Detail & Related papers (2023-04-03T02:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.