Hierarchical Knowledge Graph Construction from Images for Scalable E-Commerce
- URL: http://arxiv.org/abs/2410.21237v1
- Date: Mon, 28 Oct 2024 17:34:05 GMT
- Title: Hierarchical Knowledge Graph Construction from Images for Scalable E-Commerce
- Authors: Zhantao Yang, Han Zhang, Fangyi Chen, Anudeepsekhar Bolimera, Marios Savvides,
- Abstract summary: We propose a novel method for constructing structured product knowledge graphs from raw product images.
The method cooperatively leverages recent advances in the vision-language model (VLM) and large language model (LLM)
- Score: 17.97354500453661
- License:
- Abstract: Knowledge Graph (KG) is playing an increasingly important role in various AI systems. For e-commerce, an efficient and low-cost automated knowledge graph construction method is the foundation of enabling various successful downstream applications. In this paper, we propose a novel method for constructing structured product knowledge graphs from raw product images. The method cooperatively leverages recent advances in the vision-language model (VLM) and large language model (LLM), fully automating the process and allowing timely graph updates. We also present a human-annotated e-commerce product dataset for benchmarking product property extraction in knowledge graph construction. Our method outperforms our baseline in all metrics and evaluated properties, demonstrating its effectiveness and bright usage potential.
Related papers
- Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models [0.0]
We propose a novel approach based on knowledge graphs to provide timely access to structured information.
Our framework encompasses a text mining process, which includes information retrieval, keyphrase extraction, semantic network creation, and topic map visualization.
We apply our methodology to the domain of automotive electrical systems to demonstrate the approach, which is scalable.
arXiv Detail & Related papers (2024-09-30T07:08:28Z) - Knowledge Graph Extension by Entity Type Recognition [2.8231106019727195]
We propose a novel knowledge graph extension framework based on entity type recognition.
The framework aims to achieve high-quality knowledge extraction by aligning the schemas and entities across different knowledge graphs.
arXiv Detail & Related papers (2024-05-03T19:55:03Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
This paper aims to improve the state of the art of automatic construction and completion of knowledge graphs from text.
In this context, one emerging paradigm is in-context learning where a language model is used as it is with a prompt.
arXiv Detail & Related papers (2023-05-15T17:10:19Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
We propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information.
Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models.
Our experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method.
arXiv Detail & Related papers (2022-09-19T02:41:02Z) - GraphMAE: Self-Supervised Masked Graph Autoencoders [52.06140191214428]
We present a masked graph autoencoder GraphMAE that mitigates issues for generative self-supervised graph learning.
We conduct extensive experiments on 21 public datasets for three different graph learning tasks.
The results manifest that GraphMAE--a simple graph autoencoder with our careful designs--can consistently generate outperformance over both contrastive and generative state-of-the-art baselines.
arXiv Detail & Related papers (2022-05-22T11:57:08Z) - Billion-scale Pre-trained E-commerce Product Knowledge Graph Model [13.74839302948699]
Pre-trained Knowledge Graph Model (PKGM) for e-commerce product knowledge graph.
PKGM provides item knowledge services in a uniform way for embedding-based models without accessing triple data in the knowledge graph.
We test PKGM in three knowledge-related tasks including item classification, same item identification, and recommendation.
arXiv Detail & Related papers (2021-05-02T04:28:22Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.