Procedure Model for Building Knowledge Graphs for Industry Applications
- URL: http://arxiv.org/abs/2409.13425v1
- Date: Fri, 20 Sep 2024 11:46:37 GMT
- Title: Procedure Model for Building Knowledge Graphs for Industry Applications
- Authors: Sascha Meckler,
- Abstract summary: The graph-based integration of previously unconnected information with domain knowledge provides new insights.
This paper presents a practical step-by-step procedure model for building an RDF knowledge graph.
- Score: 0.0
- License:
- Abstract: Enterprise knowledge graphs combine business data and organizational knowledge by means of a semantic network of concepts, properties, individuals and relationships. The graph-based integration of previously unconnected information with domain knowledge provides new insights and enables intelligent business applications. However, knowledge graph construction is a large investment which requires a joint effort of domain and technical experts. This paper presents a practical step-by-step procedure model for building an RDF knowledge graph that interconnects heterogeneous data and expert knowledge for an industry use case. The self-contained process adapts the "Cross Industry Standard Process for Data Mining" and uses competency questions throughout the entire development cycle. The procedure model starts with business and data understanding, describes tasks for ontology modeling and the graph setup, and ends with process steps for evaluation and deployment.
Related papers
- Hierarchical Knowledge Graph Construction from Images for Scalable E-Commerce [17.97354500453661]
We propose a novel method for constructing structured product knowledge graphs from raw product images.
The method cooperatively leverages recent advances in the vision-language model (VLM) and large language model (LLM)
arXiv Detail & Related papers (2024-10-28T17:34:05Z) - Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models [0.0]
We propose a novel approach based on knowledge graphs to provide timely access to structured information.
Our framework encompasses a text mining process, which includes information retrieval, keyphrase extraction, semantic network creation, and topic map visualization.
We apply our methodology to the domain of automotive electrical systems to demonstrate the approach, which is scalable.
arXiv Detail & Related papers (2024-09-30T07:08:28Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Automated Knowledge Graph Learning in Industrial Processes [0.0]
This paper introduces a framework for automated knowledge graph learning from time series data, specifically tailored for industrial applications.
Our framework addresses the complexities inherent in industrial datasets, transforming them into knowledge graphs that improve decision-making, process optimization, and knowledge discovery.
arXiv Detail & Related papers (2024-07-02T09:47:56Z) - PDPK: A Framework to Synthesise Process Data and Corresponding
Procedural Knowledge for Manufacturing [0.0]
We provide a framework to generate synthetic datasets that can be adapted to different domains.
The framework and evaluation code, as well as the dataset used in the evaluation, are available open source.
arXiv Detail & Related papers (2023-08-16T13:50:23Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models.
The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies.
We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.
arXiv Detail & Related papers (2023-07-03T16:01:45Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
This paper aims to improve the state of the art of automatic construction and completion of knowledge graphs from text.
In this context, one emerging paradigm is in-context learning where a language model is used as it is with a prompt.
arXiv Detail & Related papers (2023-05-15T17:10:19Z) - CateCom: a practical data-centric approach to categorization of
computational models [77.34726150561087]
We present an effort aimed at organizing the landscape of physics-based and data-driven computational models.
We apply object-oriented design concepts and outline the foundations of an open-source collaborative framework.
arXiv Detail & Related papers (2021-09-28T02:59:40Z) - Mapping Patterns for Virtual Knowledge Graphs [71.61234136161742]
Virtual Knowledge Graphs (VKG) constitute one of the most promising paradigms for integrating and accessing legacy data sources.
We build on well-established methodologies and patterns studied in data management, data analysis, and conceptual modeling.
We validate our catalog on the considered VKG scenarios, showing it covers the vast majority of patterns present therein.
arXiv Detail & Related papers (2020-12-03T13:54:52Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.