TraderTalk: An LLM Behavioural ABM applied to Simulating Human Bilateral Trading Interactions
- URL: http://arxiv.org/abs/2410.21280v1
- Date: Thu, 10 Oct 2024 23:58:07 GMT
- Title: TraderTalk: An LLM Behavioural ABM applied to Simulating Human Bilateral Trading Interactions
- Authors: Alicia Vidler, Toby Walsh,
- Abstract summary: We introduce a novel hybrid approach that augments Agent-Based Models (ABMs) with behaviors generated by Large Language Models (LLMs) to simulate human trading interactions.
We call our model TraderTalk. Leveraging LLMs trained on extensive human-authored text, we capture detailed and nuanced representations of bilateral conversations in financial trading.
- Score: 15.379345372327375
- License:
- Abstract: We introduce a novel hybrid approach that augments Agent-Based Models (ABMs) with behaviors generated by Large Language Models (LLMs) to simulate human trading interactions. We call our model TraderTalk. Leveraging LLMs trained on extensive human-authored text, we capture detailed and nuanced representations of bilateral conversations in financial trading. Applying this Generative Agent-Based Model (GABM) to government bond markets, we replicate trading decisions between two stylised virtual humans. Our method addresses both structural challenges, such as coordinating turn-taking between realistic LLM-based agents, and design challenges, including the interpretation of LLM outputs by the agent model. By exploring prompt design opportunistically rather than systematically, we enhance the realism of agent interactions without exhaustive overfitting or model reliance. Our approach successfully replicates trade-to-order volume ratios observed in related asset markets, demonstrating the potential of LLM-augmented ABMs in financial simulations
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Cooperative Multi-Agent Planning with Adaptive Skill Synthesis [16.228784877899976]
Multi-agent systems with reinforcement learning face challenges in sample efficiency, interpretability, and transferability.
We present a novel multi-agent architecture that integrates vision-language models (VLMs) with a dynamic skill library and structured communication for decentralized closed-loop decision-making.
arXiv Detail & Related papers (2025-02-14T13:23:18Z) - TradingAgents: Multi-Agents LLM Financial Trading Framework [4.293484524693143]
TradingAgents proposes a novel stock trading framework inspired by trading firms.
It features LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles.
By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance.
arXiv Detail & Related papers (2024-12-28T12:54:06Z) - Toward LLM-Agent-Based Modeling of Transportation Systems: A Conceptual Framework [15.11130742093296]
We propose a general LLM-agent-based modeling framework for transportation systems.
Our conceptual framework design closely replicates the decision-making and interaction processes and traits of human travelers.
Although further refinement of the LLM-agent-based modeling framework is necessary, we believe that this approach has the potential to improve transportation system modeling and simulation.
arXiv Detail & Related papers (2024-12-09T17:24:41Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
We present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems.
Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles.
We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - On the limits of agency in agent-based models [13.130587222524305]
Agent-based modeling offers powerful insights into complex systems, but its practical utility has been limited by computational constraints.
Recent advancements in large language models (LLMs) could enhance ABMs with adaptive agents, but their integration into large-scale simulations remains challenging.
We present LLM archetypes, a technique that balances behavioral complexity with computational efficiency, allowing for nuanced agent behavior in large-scale simulations.
arXiv Detail & Related papers (2024-09-14T04:17:24Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid
Methodology [6.09170287691728]
Modern financial exchanges use an electronic limit order book (LOB) to store bid and ask orders for a specific financial asset.
We propose a novel hybrid LOB simulation paradigm characterised by: (1) representing the aggregation of market events' logic by a neural background trader that is pre-trained on historical LOB data through a neural point model; and (2) embedding the background trader in a multi-agent simulation with other trading agents.
We show that the stylised facts remain and we demonstrate order flow impact and financial herding behaviours that are in accordance with empirical observations of real markets.
arXiv Detail & Related papers (2023-02-28T20:53:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.