論文の概要: Mathematical Derivation Graphs: A Task for Summarizing Equation Dependencies in STEM Manuscripts
- arxiv url: http://arxiv.org/abs/2410.21324v1
- Date: Sat, 26 Oct 2024 16:52:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:43:04.184634
- Title: Mathematical Derivation Graphs: A Task for Summarizing Equation Dependencies in STEM Manuscripts
- Title(参考訳): 数式導出グラフ:STEMマニュアルにおける方程式依存を要約するタスク
- Authors: Vishesh Prasad, Brian Kim, Nickvash Kani,
- Abstract要約: 本稿では,STEM論文における数学的表現間の依存関係関係の理解に向けた最初のステップについて述べる。
我々のデータセットは、arXivコーパスのランダムサンプリングから得られたものであり、107個のSTEM原稿の解析を含んでいる。
分析モデルとNLPモデルを総合的に評価し,各項目の導出関係を同定・抽出する能力を評価する。
- 参考スコア(独自算出の注目度): 1.1961645395911131
- License:
- Abstract: Recent advances in natural language processing (NLP), particularly with the emergence of large language models (LLMs), have significantly enhanced the field of textual analysis. However, while these developments have yielded substantial progress in analyzing textual data, applying analysis to mathematical equations and their relationships within texts has produced mixed results. In this paper, we take the initial steps toward understanding the dependency relationships between mathematical expressions in STEM articles. Our dataset, sourced from a random sampling of the arXiv corpus, contains an analysis of 107 published STEM manuscripts whose inter-equation dependency relationships have been hand-labeled, resulting in a new object we refer to as a derivation graph that summarizes the mathematical content of the manuscript. We exhaustively evaluate analytical and NLP-based models to assess their capability to identify and extract the derivation relationships for each article and compare the results with the ground truth. Our comprehensive testing finds that both analytical and NLP models (including LLMs) achieve $\sim$40-50% F1 scores for extracting derivation graphs from articles, revealing that the recent advances in NLP have not made significant inroads in comprehending mathematical texts compared to simpler analytic models. While current approaches offer a solid foundation for extracting mathematical information, further research is necessary to improve accuracy and depth in this area.
- Abstract(参考訳): 自然言語処理(NLP)の最近の進歩、特に大規模言語モデル(LLM)の出現は、テキスト解析の分野を著しく強化している。
しかし、これらの発展は、テキストデータの解析においてかなりの進歩をもたらしたが、数式に解析を適用し、テキスト内におけるそれらの関係は、混合の結果を生み出している。
本稿では,STEM論文における数学的表現間の係り受け関係を理解するための最初のステップについて述べる。
我々のデータセットは、arXivコーパスのランダムサンプリングから得られたもので、方程式間の依存関係関係が手作業でラベル付けされた107個のSTEM原稿を解析した結果、原稿の数学的内容を要約した導出グラフと呼ばれる新しいオブジェクトが得られた。
分析モデルとNLPモデルとを総合的に評価し,各記事の導出関係を同定・抽出し,結果と基礎的真理を比較した。
解析的モデルとNLPモデル(LLMを含む)は,論文から導出グラフを抽出するために$40-50%のF1スコアを得られた。
現在のアプローチは、数学的情報を抽出するための確かな基盤を提供するが、この分野の精度と深さを改善するためにはさらなる研究が必要である。
関連論文リスト
- Detection and Measurement of Syntactic Templates in Generated Text [58.111650675717414]
モデルにおける一般的な反復を特徴付けるための構文的特徴の解析を行う。
モデルでは、下流のタスクにおいて、人間の参照テキストよりも高いレートでテンプレートテキストを生成する傾向にある。
論文 参考訳(メタデータ) (2024-06-28T19:34:23Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
我々は,自然言語から因果関係を推定する大規模言語モデル (LLM) の能力を評価する。
LLMは、(特別な)トレーニングサンプルを必要とせずにペア関係のベンチマークで競合性能を示す。
我々は、反復的なペアワイズクエリを通して因果グラフを外挿するアプローチを拡張した。
論文 参考訳(メタデータ) (2023-12-22T13:14:38Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
本研究は,対象物,文,画像全体に基づいて,テキストおよび視覚的証拠を検索することを提案する。
我々は,オブジェクトレベル,画像レベル,文レベル情報を合成し,同一性と異なるモダリティ間の推論を改善する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-05-25T15:26:13Z) - Can Large Language Models emulate an inductive Thematic Analysis of
semi-structured interviews? An exploration and provocation on the limits of
the approach and the model [0.0]
本稿では, GPT 3.5-Turboモデルを用いて, 帰納的テーマ解析のいくつかの側面をエミュレートした実験結果と考察を行った。
本論文の目的は, 定性解析における人間アナリストの代替ではなく, LLMデータ操作のいくつかの要素がある程度の定性研究を支援することができるかを知ることである。
論文 参考訳(メタデータ) (2023-05-22T13:16:07Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
本報告では,テキストや画像の生成モデルで発生するような分布のペア間の比較尺度であるMAUVEについて述べる。
我々は、MAUVEが人間の文章の分布と現代のニューラル言語モデルとのギャップを定量化できることを発見した。
我々は、MAUVEが既存のメトリクスと同等以上の画像の既知の特性を識別できることを視覚領域で実証する。
論文 参考訳(メタデータ) (2022-12-30T07:37:40Z) - To Know by the Company Words Keep and What Else Lies in the Vicinity [0.0]
本稿では,GloVe や Word2Vec など,セミナルアルゴリズムによって学習された統計データの解析モデルを提案する。
われわれの知る限りでは、Word2Vecのソフトマックス最適化、スキップグラムアルゴリズムの最初の既知のソリューションである。
論文 参考訳(メタデータ) (2022-04-30T03:47:48Z) - Learning Topic Models: Identifiability and Finite-Sample Analysis [6.181048261489101]
本稿では,特定の統合可能性に基づく潜在トピックの最大確率推定器(MLE)を提案する。
シミュレーションと実データの両方について実証的研究を行った。
論文 参考訳(メタデータ) (2021-10-08T16:35:42Z) - Artificial Text Detection via Examining the Topology of Attention Maps [58.46367297712477]
トポロジカルデータ分析(TDA)に基づく3種類の解釈可能なトポロジカル特徴を提案する。
BERTモデルから派生した特徴が3つの共通データセットにおいて、カウントベースとニューラルベースベースラインを最大10%上回っていることを実証的に示す。
特徴の探索解析は表面に対する感度と構文的性質を明らかにしている。
論文 参考訳(メタデータ) (2021-09-10T12:13:45Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
我々は、静的DSMによって生成されたり、BERTによって生成された文脈化されたベクトルを平均化して得られるような、型分布ベクトルの包括的評価を行う。
その結果、予測ベースモデルの優越性は現実よりも明らかであり、ユビキタスではないことが明らかとなった。
我々は認知神経科学からRepresentational similarity Analysis(RSA)の方法論を借りて、分布モデルによって生成された意味空間を検査する。
論文 参考訳(メタデータ) (2021-05-20T15:18:06Z) - Automatic coding of students' writing via Contrastive Representation
Learning in the Wasserstein space [6.884245063902909]
本研究は,学生の文章の質的分析を支援する統計的機械学習(ML)手法を構築するためのステップである。
MLアルゴリズムは,人間解析のラタ間信頼性に近づいた。
論文 参考訳(メタデータ) (2020-11-26T16:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。