Retrieval-Retro: Retrieval-based Inorganic Retrosynthesis with Expert Knowledge
- URL: http://arxiv.org/abs/2410.21341v1
- Date: Mon, 28 Oct 2024 04:37:08 GMT
- Title: Retrieval-Retro: Retrieval-based Inorganic Retrosynthesis with Expert Knowledge
- Authors: Heewoong Noh, Namkyeong Lee, Gyoung S. Na, Chanyoung Park,
- Abstract summary: We propose Retrieval-Retro for inorganic retrosynthesis planning, which implicitly extracts the precursor information of reference materials.
During retrieval, we consider the thermodynamic relationship between target material and precursors, which is essential domain expertise.
Experiments demonstrate the superiority of Retrieval-Retro in retrosynthesis planning, especially in discovering novel synthesis recipes.
- Score: 25.234422666357947
- License:
- Abstract: While inorganic retrosynthesis planning is essential in the field of chemical science, the application of machine learning in this area has been notably less explored compared to organic retrosynthesis planning. In this paper, we propose Retrieval-Retro for inorganic retrosynthesis planning, which implicitly extracts the precursor information of reference materials that are retrieved from the knowledge base regarding domain expertise in the field. Specifically, instead of directly employing the precursor information of reference materials, we propose implicitly extracting it with various attention layers, which enables the model to learn novel synthesis recipes more effectively. Moreover, during retrieval, we consider the thermodynamic relationship between target material and precursors, which is essential domain expertise in identifying the most probable precursor set among various options. Extensive experiments demonstrate the superiority of Retrieval-Retro in retrosynthesis planning, especially in discovering novel synthesis recipes, which is crucial for materials discovery. The source code for Retrieval-Retro is available at https://github.com/HeewoongNoh/Retrieval-Retro.
Related papers
- BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Precursor recommendation for inorganic synthesis by machine learning
materials similarity from scientific literature [0.0]
We use a knowledge base of 29,900 solid-state synthesis recipes to automatically learn which precursors to recommend for the synthesis of a novel target material.
The data-driven approach learns chemical similarity of materials and refers the synthesis of a new target to precedent synthesis procedures of similar materials.
Our approach captures decades of synthesis data in a mathematical form, making it accessible for use in recommendation engines and autonomous laboratories.
arXiv Detail & Related papers (2023-02-05T04:57:59Z) - Recent advances in artificial intelligence for retrosynthesis [29.32667622776065]
Retrosynthesis is the cornerstone of organic chemistry, providing chemists in material and drug manufacturing access to poorly available and brand-new molecules.
Recent breakthroughs driven by artificial intelligence have revolutionized retrosynthesis.
arXiv Detail & Related papers (2023-01-14T09:29:39Z) - MechRetro is a chemical-mechanism-driven graph learning framework for
interpretable retrosynthesis prediction and pathway planning [10.364476820771607]
MechRetro is a graph learning framework for interpretable retrosynthetic prediction and pathway planning.
By integrating chemical knowledge as prior information, we design a novel Graph Transformer architecture.
We demonstrate that MechRetro outperforms the state-of-the-art approaches for retrosynthetic prediction with a large margin on large-scale benchmark datasets.
arXiv Detail & Related papers (2022-10-06T01:27:53Z) - FusionRetro: Molecule Representation Fusion via In-Context Learning for
Retrosynthetic Planning [58.47265392465442]
Retrosynthetic planning aims to devise a complete multi-step synthetic route from starting materials to a target molecule.
Current strategies use a decoupled approach of single-step retrosynthesis models and search algorithms.
We propose a novel framework that utilizes context information for improved retrosynthetic planning.
arXiv Detail & Related papers (2022-09-30T08:44:58Z) - Retroformer: Pushing the Limits of Interpretable End-to-end
Retrosynthesis Transformer [15.722719721123054]
Retrosynthesis prediction is one of the fundamental challenges in organic synthesis.
We propose Retroformer, a novel Transformer-based architecture for retrosynthesis prediction.
Retroformer reaches the new state-of-the-art accuracy for the end-to-end template-free retrosynthesis.
arXiv Detail & Related papers (2022-01-29T02:03:55Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
We propose a machine learning-based, unassisted approach to remove chemically wrong entries from data sets.
Our results show an improved prediction quality for models trained on the cleaned and balanced data sets.
arXiv Detail & Related papers (2021-02-02T09:34:34Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search [83.22850633478302]
Retrosynthetic planning identifies a series of reactions that can lead to the synthesis of a target product.
Existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality.
We propose Retro*, a neural-based A*-like algorithm that finds high-quality synthetic routes efficiently.
arXiv Detail & Related papers (2020-06-29T05:53:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.