High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
- URL: http://arxiv.org/abs/2410.21419v1
- Date: Mon, 28 Oct 2024 18:13:56 GMT
- Title: High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
- Authors: Chris CamaƱo, Daniel Huang,
- Abstract summary: We introduce Soft Kernel Interpolation (SoftKI) designed for scalable Process (GP) regression on high-dimensional datasets.
Inspired by Structured Interpolation (SKI), which approximates a GP kernel via a structured lattice, SoftKI approximates a kernel via softmax from a smaller number of learned points.
By abandoning the lattice structure used in SKI-based methods, SoftKI separates the cost of forming an approximate GP kernel from the dimensionality of the data, making it well-suited for high-dimensional datasets.
- Score: 0.8057006406834466
- License:
- Abstract: We introduce Soft Kernel Interpolation (SoftKI) designed for scalable Gaussian Process (GP) regression on high-dimensional datasets. Inspired by Structured Kernel Interpolation (SKI), which approximates a GP kernel via interpolation from a structured lattice, SoftKI approximates a kernel via softmax interpolation from a smaller number of learned interpolation (i.e, inducing) points. By abandoning the lattice structure used in SKI-based methods, SoftKI separates the cost of forming an approximate GP kernel from the dimensionality of the data, making it well-suited for high-dimensional datasets. We demonstrate the effectiveness of SoftKI across various examples, and demonstrate that its accuracy exceeds that of other scalable GP methods when the data dimensionality is modest (around $10$).
Related papers
- Large-scale magnetic field maps using structured kernel interpolation
for Gaussian process regression [0.9208007322096532]
We present a mapping algorithm to compute large-scale magnetic field maps in indoor environments.
In our simulations, we show that our method achieves better accuracy than current state-of-the-art methods on magnetic field maps with a growing mapping area.
arXiv Detail & Related papers (2023-10-25T11:58:18Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
Click-based interactive segmentation (IS) aims to extract the target objects under user interaction.
Most of the current deep learning (DL)-based methods mainly follow the general pipelines of semantic segmentation.
We propose to formulate the IS task as a Gaussian process (GP)-based pixel-wise binary classification model on each image.
arXiv Detail & Related papers (2023-02-28T14:01:01Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Exact Gaussian Processes for Massive Datasets via Non-Stationary
Sparsity-Discovering Kernels [0.0]
We propose to take advantage of naturally-structured sparsity by allowing the kernel to discover -- instead of induce -- sparse structure.
The principle of ultra-flexible, compactly-supported, and non-stationary kernels, combined with HPC and constrained optimization, lets us scale exact GPs well beyond 5 million data points.
arXiv Detail & Related papers (2022-05-18T16:56:53Z) - Robust Training in High Dimensions via Block Coordinate Geometric Median
Descent [69.47594803719333]
Geometric median (textGm) is a classical method in statistics for achieving a robust estimation of the uncorrupted data.
In this paper, we show that by that by applying textscGm to only a chosen block of coordinates at a time, one can retain a breakdown point of 0.5 judiciously for smooth nontext problems.
arXiv Detail & Related papers (2021-06-16T15:55:50Z) - SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice
for Scalable Gaussian Processes [39.821400341226315]
Structured Kernel Interpolation (SKI) framework is used to perform efficient matrix vector multiplies (MVMs) on a grid.
We develop a connection between SKI and the permutohedral lattice used for high-dimensional fast bilateral filtering.
Using a sparse simplicial grid instead of a dense rectangular one, we can perform GP inference exponentially faster in the dimension than SKI.
We additionally provide a implementation of Simplex-GP, which enables significant acceleration of MVM based inference.
arXiv Detail & Related papers (2021-06-12T06:04:56Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Faster Kernel Interpolation for Gaussian Processes [30.04235162264955]
Key challenge in scaling Process (GP) regression to massive datasets is that exact inference requires a dense n x n kernel matrix.
Structured kernel (SKI) is among the most scalable methods.
We show that SKI can be reduced to O(m log m) after a single O(n) time precomputation step.
We demonstrate speedups in practice for a wide range of m and n and apply the method to GP inference on a three-dimensional weather radar dataset with over 100 million points.
arXiv Detail & Related papers (2021-01-28T00:09:22Z) - Sparse Gaussian Processes via Parametric Families of Compactly-supported
Kernels [0.6091702876917279]
We propose a method for deriving parametric families of kernel functions with compact support.
The parameters of this family of kernels can be learned from data using maximum likelihood estimation.
We show that these approximations incur minimal error over the exact models when modeling data drawn directly from a target GP.
arXiv Detail & Related papers (2020-06-05T20:44:09Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
We develop techniques which exploit spectral properties of the data matrix to obtain improved approximation guarantees.
Our approach leads to significantly better bounds for datasets with known rates of singular value decay.
We show that both our improved bounds and the multiple-descent curve can be observed on real datasets simply by varying the RBF parameter.
arXiv Detail & Related papers (2020-02-21T00:43:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.