論文の概要: TACO: Adversarial Camouflage Optimization on Trucks to Fool Object Detectors
- arxiv url: http://arxiv.org/abs/2410.21443v1
- Date: Mon, 28 Oct 2024 18:40:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:55.897827
- Title: TACO: Adversarial Camouflage Optimization on Trucks to Fool Object Detectors
- Title(参考訳): TACO:Folオブジェクト検出器へのトラックの逆カモフラージュ最適化
- Authors: Adonisz Dimitriu, Tamás Michaletzky, Viktor Remeli,
- Abstract要約: 敵攻撃は、自動運転車や防衛システムといった重要なアプリケーションにおいて、機械学習モデルの信頼性を脅かす。
本稿では3次元車両モデル上での対向カモフラージュパターンを生成する新しいフレームワークであるTrack Adversarial Camouflage Optimization (TACO)を提案する。
TACO は YOLOv8 の検出性能を著しく低下させ, 未確認試験データに対して AP@0.5 の 0.0099 を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Adversarial attacks threaten the reliability of machine learning models in critical applications like autonomous vehicles and defense systems. As object detectors become more robust with models like YOLOv8, developing effective adversarial methodologies is increasingly challenging. We present Truck Adversarial Camouflage Optimization (TACO), a novel framework that generates adversarial camouflage patterns on 3D vehicle models to deceive state-of-the-art object detectors. Adopting Unreal Engine 5, TACO integrates differentiable rendering with a Photorealistic Rendering Network to optimize adversarial textures targeted at YOLOv8. To ensure the generated textures are both effective in deceiving detectors and visually plausible, we introduce the Convolutional Smooth Loss function, a generalized smooth loss function. Experimental evaluations demonstrate that TACO significantly degrades YOLOv8's detection performance, achieving an AP@0.5 of 0.0099 on unseen test data. Furthermore, these adversarial patterns exhibit strong transferability to other object detection models such as Faster R-CNN and earlier YOLO versions.
- Abstract(参考訳): 敵攻撃は、自動運転車や防衛システムといった重要なアプリケーションにおいて、機械学習モデルの信頼性を脅かす。
オブジェクト検出器がYOLOv8のようなモデルでより堅牢になるにつれて、効果的な対角法の開発はますます困難になっている。
本稿では,3次元車両モデル上の対向カモフラージュパターンを生成し,最先端の物体検出装置を欺く新しいフレームワークであるTrack Adversarial Camouflage Optimization (TACO)を提案する。
Unreal Engine 5の採用 TACOは、差別化可能なレンダリングをフォトリアリスティックレンダリングネットワークと統合し、YOLOv8をターゲットにした対向テクスチャを最適化する。
生成したテクスチャが検知器の消耗に有効であることを保証するため,一般化されたスムーズロス関数である畳み込みスムーズロス関数を導入する。
実験により、TACOはYOLOv8の検出性能を著しく低下させ、未知のテストデータに対してAP@0.5の0.0099を達成した。
さらに、これらの対向パターンは、より高速なR-CNNや初期のYOLOバージョンのような他のオブジェクト検出モデルに対して強い伝達性を示す。
関連論文リスト
- YOLO-ELA: Efficient Local Attention Modeling for High-Performance Real-Time Insulator Defect Detection [0.0]
無人航空機からの絶縁体欠陥検出のための既存の検出方法は、複雑な背景や小さな物体と競合する。
本稿では,この課題に対処するため,新しい注目基盤アーキテクチャであるYOLO-ELAを提案する。
高分解能UAV画像による実験結果から,本手法は96.9% mAP0.5,リアルタイム検出速度74.63フレーム/秒を実現した。
論文 参考訳(メタデータ) (2024-10-15T16:00:01Z) - Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
本稿では,ディープラーニングモデルを用いた道路損傷検出のための総合ワークフローを提案する。
ハードウェアの制約を満たすため、大きな画像が収穫され、軽量モデルが利用される。
提案手法では,コーディネートアテンションレイヤを備えたカスタムYOLOv7モデルや,Tiny YOLOv7モデルなど,複数のモデルアーキテクチャを採用している。
論文 参考訳(メタデータ) (2024-10-10T22:55:12Z) - YOLO9tr: A Lightweight Model for Pavement Damage Detection Utilizing a Generalized Efficient Layer Aggregation Network and Attention Mechanism [0.0]
本稿では,舗装損傷検出のための軽量物体検出モデルYOLO9trを提案する。
YOLO9trはYOLOv9アーキテクチャに基づいており、機能抽出とアテンション機構を強化する部分的なアテンションブロックを備えている。
このモデルは、最大136FPSのフレームレートを実現し、ビデオ監視や自動検査システムなどのリアルタイムアプリケーションに適合する。
論文 参考訳(メタデータ) (2024-06-17T06:31:43Z) - RAUCA: A Novel Physical Adversarial Attack on Vehicle Detectors via Robust and Accurate Camouflage Generation [19.334642862951537]
本稿では,頑健で正確なカモフラージュ生成手法であるRAUCAを提案する。
RAUCAのコアはニューラルレンダリングコンポーネントであるNeural Renderer Plus(NRP)で、車両のテクスチャを正確に投影し、照明や天気などの環境特性を持つ画像を描画することができる。
6つの一般的な物体検出器の実験結果から、RAUCAはシミュレーションと実世界の両方の設定において、既存の手法を一貫して上回っていることが示されている。
論文 参考訳(メタデータ) (2024-02-24T16:50:10Z) - DOEPatch: Dynamically Optimized Ensemble Model for Adversarial Patches Generation [12.995762461474856]
本稿では, エネルギーの概念を導入し, 相手のカテゴリの総エネルギーを最小化するために, 相手のパッチ生成過程を, 相手のパッチの最適化として扱う。
逆行訓練を採用することにより,動的に最適化されたアンサンブルモデルを構築する。
我々は6つの比較実験を行い、本アルゴリズムを5つの主流物体検出モデルで検証した。
論文 参考訳(メタデータ) (2023-12-28T08:58:13Z) - AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training [64.14759275211115]
そこで本研究では,DART3Dと呼ばれるモノクル3次元物体検出のための,深度対応の頑健な対向学習法を提案する。
我々の敵の訓練アプローチは、本質的な不確実性に乗じて、敵の攻撃に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2023-09-03T07:05:32Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
現実世界の敵対的な例(通常はパッチの形で)の存在は、安全クリティカルなコンピュータビジョンタスクにおけるディープラーニングモデルの使用に深刻な脅威をもたらす。
本稿では,異なる種類の対立パッチを攻撃した場合のセマンティックセグメンテーションモデルのロバスト性を評価する。
画素の誤分類を誘導する攻撃者の能力を改善するために, 新たな損失関数を提案する。
論文 参考訳(メタデータ) (2022-01-05T22:33:43Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z) - Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises [87.53808756910452]
The method is proposed to deceive-of-the-the-art SiameseRPN-based tracker。
本手法は転送性に優れ,DaSiamRPN,DaSiamRPN-UpdateNet,DiMPなどの他のトップパフォーマンストラッカーを騙すことができる。
論文 参考訳(メタデータ) (2020-03-21T07:13:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。