TACO: Adversarial Camouflage Optimization on Trucks to Fool Object Detectors
- URL: http://arxiv.org/abs/2410.21443v1
- Date: Mon, 28 Oct 2024 18:40:06 GMT
- Title: TACO: Adversarial Camouflage Optimization on Trucks to Fool Object Detectors
- Authors: Adonisz Dimitriu, Tamás Michaletzky, Viktor Remeli,
- Abstract summary: Adversarial attacks threaten reliability of machine learning models in critical applications like autonomous vehicles and defense systems.
We present Truck Adversarial Camouflage Optimization (TACO), a novel framework that generates adversarial camouflage patterns on 3D vehicle models.
We show that TACO significantly degrades YOLOv8's detection performance, achieving an AP@0.5 of 0.0099 on unseen test data.
- Score: 0.0
- License:
- Abstract: Adversarial attacks threaten the reliability of machine learning models in critical applications like autonomous vehicles and defense systems. As object detectors become more robust with models like YOLOv8, developing effective adversarial methodologies is increasingly challenging. We present Truck Adversarial Camouflage Optimization (TACO), a novel framework that generates adversarial camouflage patterns on 3D vehicle models to deceive state-of-the-art object detectors. Adopting Unreal Engine 5, TACO integrates differentiable rendering with a Photorealistic Rendering Network to optimize adversarial textures targeted at YOLOv8. To ensure the generated textures are both effective in deceiving detectors and visually plausible, we introduce the Convolutional Smooth Loss function, a generalized smooth loss function. Experimental evaluations demonstrate that TACO significantly degrades YOLOv8's detection performance, achieving an AP@0.5 of 0.0099 on unseen test data. Furthermore, these adversarial patterns exhibit strong transferability to other object detection models such as Faster R-CNN and earlier YOLO versions.
Related papers
- Toward Robust and Accurate Adversarial Camouflage Generation against Vehicle Detectors [19.334642862951537]
We propose a robust and accurate camouflage generation method, namely RAUCA.
The core of RAUCA is a novel neural rendering component, End-to-End Neural Renderer Plus (E2E-NRP), which can accurately optimize and project vehicle textures.
In addition, we integrate a multi-weather dataset for camouflage generation, leveraging the E2E-NRP to enhance the attack robustness.
arXiv Detail & Related papers (2024-11-15T08:17:08Z) - YOLO-ELA: Efficient Local Attention Modeling for High-Performance Real-Time Insulator Defect Detection [0.0]
Existing detection methods for insulator defect identification from unmanned aerial vehicles struggle with complex background scenes and small objects.
This paper proposes a new attention-based foundation architecture, YOLO-ELA, to address this issue.
Experimental results on high-resolution UAV images show that our method achieved a state-of-the-art performance of 96.9% mAP0.5 and a real-time detection speed of 74.63 frames per second.
arXiv Detail & Related papers (2024-10-15T16:00:01Z) - Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
This paper presents a comprehensive workflow for road damage detection using deep learning models.
To accommodate hardware limitations, large images are cropped, and lightweight models are utilized.
The proposed approach employs multiple model architectures, including a custom YOLOv7 model with Coordinate Attention layers and a Tiny YOLOv7 model.
arXiv Detail & Related papers (2024-10-10T22:55:12Z) - RAUCA: A Novel Physical Adversarial Attack on Vehicle Detectors via Robust and Accurate Camouflage Generation [19.334642862951537]
We propose a robust and accurate camouflage generation method, namely RAUCA.
The core of RAUCA is a novel neural rendering component, Neural Renderer Plus (NRP), which can accurately project vehicle textures and render images with environmental characteristics such as lighting and weather.
Experimental results on six popular object detectors show that RAUCA consistently outperforms existing methods in both simulation and real-world settings.
arXiv Detail & Related papers (2024-02-24T16:50:10Z) - DOEPatch: Dynamically Optimized Ensemble Model for Adversarial Patches Generation [12.995762461474856]
We introduce the concept of energy and treat the adversarial patches generation process as an optimization of the adversarial patches to minimize the total energy of the person'' category.
By adopting adversarial training, we construct a dynamically optimized ensemble model.
We carried out six sets of comparative experiments and tested our algorithm on five mainstream object detection models.
arXiv Detail & Related papers (2023-12-28T08:58:13Z) - AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training [64.14759275211115]
We propose a depth-aware robust adversarial training method for monocular 3D object detection, dubbed DART3D.
Our adversarial training approach capitalizes on the inherent uncertainty, enabling the model to significantly improve its robustness against adversarial attacks.
arXiv Detail & Related papers (2023-09-03T07:05:32Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
This paper presents CARLA-GeAR, a tool for the automatic generation of synthetic datasets for evaluating the robustness of neural models against physical adversarial patches.
The tool is built on the CARLA simulator, using its Python API, and allows the generation of datasets for several vision tasks in the context of autonomous driving.
The paper presents an experimental study to evaluate the performance of some defense methods against such attacks, showing how the datasets generated with CARLA-GeAR might be used in future work as a benchmark for adversarial defense in the real world.
arXiv Detail & Related papers (2022-06-09T09:17:38Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
The existence of real-world adversarial examples (commonly in the form of patches) poses a serious threat for the use of deep learning models in safety-critical computer vision tasks.
This paper presents an evaluation of the robustness of semantic segmentation models when attacked with different types of adversarial patches.
A novel loss function is proposed to improve the capabilities of attackers in inducing a misclassification of pixels.
arXiv Detail & Related papers (2022-01-05T22:33:43Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
In a real-world scenario like autonomous driving, more attention should be devoted to real-world adversarial examples (RWAEs)
This paper presents an in-depth evaluation of the robustness of popular SS models by testing the effects of both digital and real-world adversarial patches.
arXiv Detail & Related papers (2021-08-13T11:49:09Z) - Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises [87.53808756910452]
A cooling-shrinking attack method is proposed to deceive state-of-the-art SiameseRPN-based trackers.
Our method has good transferability and is able to deceive other top-performance trackers such as DaSiamRPN, DaSiamRPN-UpdateNet, and DiMP.
arXiv Detail & Related papers (2020-03-21T07:13:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.