AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training
- URL: http://arxiv.org/abs/2309.01106v1
- Date: Sun, 3 Sep 2023 07:05:32 GMT
- Title: AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training
- Authors: Xingyuan Li, Jinyuan Liu, Long Ma, Xin Fan, Risheng Liu
- Abstract summary: We propose a depth-aware robust adversarial training method for monocular 3D object detection, dubbed DART3D.
Our adversarial training approach capitalizes on the inherent uncertainty, enabling the model to significantly improve its robustness against adversarial attacks.
- Score: 64.14759275211115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular 3D object detection plays a pivotal role in the field of autonomous
driving and numerous deep learning-based methods have made significant
breakthroughs in this area. Despite the advancements in detection accuracy and
efficiency, these models tend to fail when faced with such attacks, rendering
them ineffective. Therefore, bolstering the adversarial robustness of 3D
detection models has become a crucial issue that demands immediate attention
and innovative solutions. To mitigate this issue, we propose a depth-aware
robust adversarial training method for monocular 3D object detection, dubbed
DART3D. Specifically, we first design an adversarial attack that iteratively
degrades the 2D and 3D perception capabilities of 3D object detection
models(IDP), serves as the foundation for our subsequent defense mechanism. In
response to this attack, we propose an uncertainty-based residual learning
method for adversarial training. Our adversarial training approach capitalizes
on the inherent uncertainty, enabling the model to significantly improve its
robustness against adversarial attacks. We conducted extensive experiments on
the KITTI 3D datasets, demonstrating that DART3D surpasses direct adversarial
training (the most popular approach) under attacks in 3D object detection
$AP_{R40}$ of car category for the Easy, Moderate, and Hard settings, with
improvements of 4.415%, 4.112%, and 3.195%, respectively.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - On the Adversarial Robustness of Camera-based 3D Object Detection [21.091078268929667]
We investigate the robustness of leading camera-based 3D object detection approaches under various adversarial conditions.
We find that bird's-eye-view-based representations exhibit stronger robustness against localization attacks.
depth-estimation-free approaches have the potential to show stronger robustness.
incorporating multi-frame benign inputs can effectively mitigate adversarial attacks.
arXiv Detail & Related papers (2023-01-25T18:59:15Z) - A Comprehensive Study of the Robustness for LiDAR-based 3D Object
Detectors against Adversarial Attacks [84.10546708708554]
3D object detectors are increasingly crucial for security-critical tasks.
It is imperative to understand their robustness against adversarial attacks.
This paper presents the first comprehensive evaluation and analysis of the robustness of LiDAR-based 3D detectors under adversarial attacks.
arXiv Detail & Related papers (2022-12-20T13:09:58Z) - Delving into the Pre-training Paradigm of Monocular 3D Object Detection [10.07932482761621]
We study the pre-training paradigm for monocular 3D object detection (M3OD)
We propose several strategies to further improve this baseline, which mainly include target guided semi-dense depth estimation, keypoint-aware 2D object detection, and class-level loss adjustment.
Combining all the developed techniques, the obtained pre-training framework produces pre-trained backbones that improve M3OD performance significantly on the KITTI-3D and nuScenes benchmarks.
arXiv Detail & Related papers (2022-06-08T03:01:13Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
We propose STMono3D, a new self-teaching framework for unsupervised domain adaptation on Mono3D.
We develop a teacher-student paradigm to generate adaptive pseudo labels on the target domain.
STMono3D achieves remarkable performance on all evaluated datasets and even surpasses fully supervised results on the KITTI 3D object detection dataset.
arXiv Detail & Related papers (2022-04-25T12:23:07Z) - Shape-Aware Monocular 3D Object Detection [15.693199934120077]
A single-stage monocular 3D object detection model is proposed.
The detection largely avoids interference from irrelevant regions surrounding the target objects.
A novel evaluation metric, namely average depth similarity (ADS) is proposed for the monocular 3D object detection models.
arXiv Detail & Related papers (2022-04-19T07:43:56Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
We propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only.
PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.
We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW.
arXiv Detail & Related papers (2021-12-21T12:48:48Z) - Geometry-aware data augmentation for monocular 3D object detection [18.67567745336633]
This paper focuses on monocular 3D object detection, one of the essential modules in autonomous driving systems.
A key challenge is that the depth recovery problem is ill-posed in monocular data.
We conduct a thorough analysis to reveal how existing methods fail to robustly estimate depth when different geometry shifts occur.
We convert the aforementioned manipulations into four corresponding 3D-aware data augmentation techniques.
arXiv Detail & Related papers (2021-04-12T23:12:48Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.