論文の概要: Predicting sub-population specific viral evolution
- arxiv url: http://arxiv.org/abs/2410.21518v1
- Date: Mon, 28 Oct 2024 20:39:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:39:57.754851
- Title: Predicting sub-population specific viral evolution
- Title(参考訳): 亜集団特異的ウイルス進化の予測
- Authors: Wenxian Shi, Menghua Wu, Regina Barzilay,
- Abstract要約: 変分分布全体をモデル化する既存の機械学習アプローチは、位置固有の予測を行うことができない。
本研究では,ウイルスタンパク質の時間分解分布を予測するサブポピュレーション特異的タンパク質進化モデルを提案する。
我々のモデルは、大陸や国間でのウイルスタンパク質の分布を正確に予測する上で、ベースラインよりも優れています。
- 参考スコア(独自算出の注目度): 28.362286268491445
- License:
- Abstract: Forecasting the change in the distribution of viral variants is crucial for therapeutic design and disease surveillance. This task poses significant modeling challenges due to the sharp differences in virus distributions across sub-populations (e.g., countries) and their dynamic interactions. Existing machine learning approaches that model the variant distribution as a whole are incapable of making location-specific predictions and ignore transmissions that shape the viral landscape. In this paper, we propose a sub-population specific protein evolution model, which predicts the time-resolved distributions of viral proteins in different locations. The algorithm explicitly models the transmission rates between sub-populations and learns their interdependence from data. The change in protein distributions across all sub-populations is defined through a linear ordinary differential equation (ODE) parametrized by transmission rates. Solving this ODE yields the likelihood of a given protein occurring in particular sub-populations. Multi-year evaluation on both SARS-CoV-2 and influenza A/H3N2 demonstrates that our model outperforms baselines in accurately predicting distributions of viral proteins across continents and countries. We also find that the transmission rates learned from data are consistent with the transmission pathways discovered by retrospective phylogenetic analysis.
- Abstract(参考訳): ウイルスの分布の変化を予測することは、治療設計と疾患の監視に不可欠である。
この課題は、サブ人口(例えば、国)間のウイルス分布の急激な差異と、それらの動的相互作用により、重要なモデリング上の課題を提起する。
変種分布全体をモデル化する既存の機械学習アプローチは、位置固有の予測を行い、バイラルランドスケープを形成するトランスミッションを無視することができない。
本稿では,異なる場所におけるウイルスタンパク質の時間分解分布を予測するサブポピュレーション特異的タンパク質進化モデルを提案する。
このアルゴリズムは、サブ人口間の伝達速度を明示的にモデル化し、データから相互依存性を学習する。
全てのサブ集団にわたるタンパク質分布の変化は、伝達速度によってパラメータ化された線形常微分方程式(ODE)によって定義される。
このODEを解くと、特定のサブ集団に存在する特定のタンパク質の可能性が生じる。
SARS-CoV-2とインフルエンザA/H3N2の多年にわたる評価により,本モデルは,大陸や国におけるウイルスタンパク質の分布を正確に予測する上で,ベースラインよりも優れていることが示された。
また、データから得られた伝達速度は、振り返り系統解析によって発見された伝達経路と一致していることがわかった。
関連論文リスト
- Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold [83.18058549195855]
自然科学における複数の過程は、確率密度のワッサーシュタイン多様体上のベクトル場として表さなければならない。
特に、疾患の発生とその治療反応が患者固有の細胞の微小環境に依存するパーソナライズド医療において重要である。
本稿では,これらのベクトル場をワッサーシュタイン多様体上で積分するメタフローマッチング(Meta Flow Matching, MFM)を提案する。
論文 参考訳(メタデータ) (2024-08-26T20:05:31Z) - Modeling, Inference, and Prediction in Mobility-Based Compartmental Models for Epidemiology [5.079807662054658]
疾患の伝達と制御の鍵となる要因として,個人の移動が紹介される。
各区画の移動度分布関数を用いて, 疾患の動態を特徴付ける。
感染集団の時系列から移動度分布を推定する。
論文 参考訳(メタデータ) (2024-06-17T18:13:57Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
比較疫学モデルは、疾患の状態に基づいて個人を分類する。
我々は、適応されたSEIRDモデルと市民のための意思決定モデルを組み合わせたABMアーキテクチャを提案する。
スペイン・ア・コルナにおけるSARS-CoV-2感染症の進行状況について検討した。
論文 参考訳(メタデータ) (2023-07-28T08:01:05Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
データから酸素抽出率(OEF)と脱酸素血液量(DBV)をより明瞭に決定する。
既存の推論手法では、DBVを過大評価しながら非常にノイズの多い、過小評価されたEFマップが得られる傾向にある。
本研究は, OEFとDBVの可算分布を推定できる確率論的機械学習手法について述べる。
論文 参考訳(メタデータ) (2022-03-11T10:47:16Z) - PhyloTransformer: A Discriminative Model for Mutation Prediction Based
on a Multi-head Self-attention Mechanism [10.468453827172477]
重症急性呼吸器症候群ウイルス2(SARS-CoV-2)は10/19/21で219万人が感染し、死亡率は3.6%となっている。
そこで我々は,トランスフォーマーを用いた識別モデルであるPhylo Transformerを開発した。
論文 参考訳(メタデータ) (2021-11-03T01:30:57Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
アミノ酸の順序を保つことで,分類器の精度が向上することを示す。
また,アメリカ疾病予防管理センター(CDC)が報告した,変異の同定に重要な役割を担っているアミノ酸の重要性も示した。
論文 参考訳(メタデータ) (2021-08-07T15:08:15Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - MutaGAN: A Seq2seq GAN Framework to Predict Mutations of Evolving
Protein Populations [0.0]
このディープラーニングフレームワークの理想的なテストケースとしてインフルエンザウイルス配列が同定された。
MutaGANは、中央のレベンシュテイン距離が2.00アミノ酸である与えられた「親」タンパク質配列から「子」配列を生成した。
結果は, 病原体予測を補助する MutaGAN フレームワークの能力が, タンパク質集団の進化予測に広く有用であることを示すものである。
論文 参考訳(メタデータ) (2020-08-26T20:20:30Z) - Survival Cluster Analysis [93.50540270973927]
異なるリスクプロファイルを持つサブポピュレーションを特定するために、生存分析には未解決の必要性がある。
このニーズに対処するアプローチは、個々の成果のキャラクタリゼーションを改善する可能性が高い。
論文 参考訳(メタデータ) (2020-02-29T22:41:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。