A Novel Score-CAM based Denoiser for Spectrographic Signature Extraction without Ground Truth
- URL: http://arxiv.org/abs/2410.21557v2
- Date: Wed, 30 Oct 2024 02:02:40 GMT
- Title: A Novel Score-CAM based Denoiser for Spectrographic Signature Extraction without Ground Truth
- Authors: Noel Elias,
- Abstract summary: This paper develops a novel Score-CAM based denoiser to extract an object's signature from noisy spectrographic data.
In particular, this paper proposes a novel generative adversarial network architecture for learning and producing spectrographic training data.
- Score: 0.0
- License:
- Abstract: Sonar based audio classification techniques are a growing area of research in the field of underwater acoustics. Usually, underwater noise picked up by passive sonar transducers contains all types of signals that travel through the ocean and is transformed into spectrographic images. As a result, the corresponding spectrograms intended to display the temporal-frequency data of a certain object often include the tonal regions of abundant extraneous noise that can effectively interfere with a 'contact'. So, a majority of spectrographic samples extracted from underwater audio signals are rendered unusable due to their clutter and lack the required indistinguishability between different objects. With limited clean true data for supervised training, creating classification models for these audio signals is severely bottlenecked. This paper derives several new techniques to combat this problem by developing a novel Score-CAM based denoiser to extract an object's signature from noisy spectrographic data without being given any ground truth data. In particular, this paper proposes a novel generative adversarial network architecture for learning and producing spectrographic training data in similar distributions to low-feature spectrogram inputs. In addition, this paper also a generalizable class activation mapping based denoiser for different distributions of acoustic data, even real-world data distributions. Utilizing these novel architectures and proposed denoising techniques, these experiments demonstrate state-of-the-art noise reduction accuracy and improved classification accuracy than current audio classification standards. As such, this approach has applications not only to audio data but for countless data distributions used all around the world for machine learning.
Related papers
- Audio Classification of Low Feature Spectrograms Utilizing Convolutional Neural Networks [0.0]
This paper derives several first-of-its-kind machine learning methodologies to analyze low feature audio spectrograms given data distributions.
In particular, this paper proposes several novel customized convolutional architectures to extract identifying features using binary, one-class, and siamese approaches.
arXiv Detail & Related papers (2024-10-28T21:48:57Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF) is a new dataset that captures real acoustic room data from multiple modalities.
RAF is the first dataset to provide densely captured room acoustic data.
arXiv Detail & Related papers (2024-03-27T17:59:56Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
A novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification.
The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition.
arXiv Detail & Related papers (2023-07-25T19:47:26Z) - Weak-signal extraction enabled by deep-neural-network denoising of
diffraction data [26.36525764239897]
We show how data can be denoised via a deep convolutional neural network.
We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data.
arXiv Detail & Related papers (2022-09-19T14:43:01Z) - Acoustic-Net: A Novel Neural Network for Sound Localization and
Quantification [28.670240455952317]
A novel neural network, termed the Acoustic-Net, is proposed to locate and quantify the sound source simply using the original signals.
The experiments demonstrate that the proposed method significantly improves the accuracy of sound source prediction and the computing speed.
arXiv Detail & Related papers (2022-03-31T12:20:09Z) - On the Frequency Bias of Generative Models [61.60834513380388]
We analyze proposed measures against high-frequency artifacts in state-of-the-art GAN training.
We find that none of the existing approaches can fully resolve spectral artifacts yet.
Our results suggest that there is great potential in improving the discriminator.
arXiv Detail & Related papers (2021-11-03T18:12:11Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Analysing the Noise Model Error for Realistic Noisy Label Data [14.766574408868806]
We study the quality of estimated noise models from the theoretical side by deriving the expected error of the noise model.
We also publish NoisyNER, a new noisy label dataset from the NLP domain.
arXiv Detail & Related papers (2021-01-24T17:45:15Z) - Ensemble of Discriminators for Domain Adaptation in Multiple Sound
Source 2D Localization [7.564344795030588]
This paper introduces an ensemble of discriminators that improves the accuracy of a domain adaptation technique for the localization of multiple sound sources.
Recording and labeling such datasets is very costly, especially because data needs to be diverse enough to cover different acoustic conditions.
arXiv Detail & Related papers (2020-12-10T09:17:29Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
In this study, we investigate various methods to capture discriminative information and simultaneously mitigate the overfitting problem.
We adopt a max feature map method to replace conventional non-linear activations in a deep neural network.
Two data augment methods and two deep architecture modules are further explored to reduce overfitting and sustain the system's discriminative power.
arXiv Detail & Related papers (2020-07-09T08:32:06Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.