Audio Classification of Low Feature Spectrograms Utilizing Convolutional Neural Networks
- URL: http://arxiv.org/abs/2410.21561v1
- Date: Mon, 28 Oct 2024 21:48:57 GMT
- Title: Audio Classification of Low Feature Spectrograms Utilizing Convolutional Neural Networks
- Authors: Noel Elias,
- Abstract summary: This paper derives several first-of-its-kind machine learning methodologies to analyze low feature audio spectrograms given data distributions.
In particular, this paper proposes several novel customized convolutional architectures to extract identifying features using binary, one-class, and siamese approaches.
- Score: 0.0
- License:
- Abstract: Modern day audio signal classification techniques lack the ability to classify low feature audio signals in the form of spectrographic temporal frequency data representations. Additionally, currently utilized techniques rely on full diverse data sets that are often not representative of real-world distributions. This paper derives several first-of-its-kind machine learning methodologies to analyze these low feature audio spectrograms given data distributions that may have normalized, skewed, or even limited training sets. In particular, this paper proposes several novel customized convolutional architectures to extract identifying features using binary, one-class, and siamese approaches to identify the spectrographic signature of a given audio signal. Utilizing these novel convolutional architectures as well as the proposed classification methods, these experiments demonstrate state-of-the-art classification accuracy and improved efficiency than traditional audio classification methods.
Related papers
- A Novel Score-CAM based Denoiser for Spectrographic Signature Extraction without Ground Truth [0.0]
This paper develops a novel Score-CAM based denoiser to extract an object's signature from noisy spectrographic data.
In particular, this paper proposes a novel generative adversarial network architecture for learning and producing spectrographic training data.
arXiv Detail & Related papers (2024-10-28T21:40:46Z) - Heterogeneous sound classification with the Broad Sound Taxonomy and Dataset [6.91815289914328]
This paper explores methodologies for automatically classifying heterogeneous sounds characterized by high intra-class variability.
We construct a dataset through manual annotation to ensure accuracy, diverse representation within each class and relevance in real-world scenarios.
Experimental results illustrate that audio embeddings encoding acoustic and semantic information achieve higher accuracy in the classification task.
arXiv Detail & Related papers (2024-10-01T18:09:02Z) - On the Frequency Bias of Generative Models [61.60834513380388]
We analyze proposed measures against high-frequency artifacts in state-of-the-art GAN training.
We find that none of the existing approaches can fully resolve spectral artifacts yet.
Our results suggest that there is great potential in improving the discriminator.
arXiv Detail & Related papers (2021-11-03T18:12:11Z) - A Review of Sound Source Localization with Deep Learning Methods [71.18444724397486]
This article is a review on deep learning methods for single and multiple sound source localization.
We provide an exhaustive topography of the neural-based localization literature in this context.
Tables summarizing the literature review are provided at the end of the review for a quick search of methods with a given set of target characteristics.
arXiv Detail & Related papers (2021-09-08T07:25:39Z) - Anomalous Sound Detection Using a Binary Classification Model and Class
Centroids [47.856367556856554]
We propose a binary classification model that is developed by using not only normal data but also outlier data in the other domains as pseudo-anomalous sound data.
We also investigate the effectiveness of additionally using anomalous sound data for further improving the binary classification model.
arXiv Detail & Related papers (2021-06-11T03:35:06Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Deep Convolutional and Recurrent Networks for Polyphonic Instrument
Classification from Monophonic Raw Audio Waveforms [30.3491261167433]
Sound Event Detection and Audio Classification tasks are traditionally addressed through time-frequency representations of audio signals such as spectrograms.
Deep neural networks as efficient feature extractors has enabled the direct use of audio signals for classification purposes.
We attempt to recognize musical instruments in polyphonic audio by only feeding their raw waveforms into deep learning models.
arXiv Detail & Related papers (2021-02-13T13:44:46Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
In this study, we investigate various methods to capture discriminative information and simultaneously mitigate the overfitting problem.
We adopt a max feature map method to replace conventional non-linear activations in a deep neural network.
Two data augment methods and two deep architecture modules are further explored to reduce overfitting and sustain the system's discriminative power.
arXiv Detail & Related papers (2020-07-09T08:32:06Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z) - Robust Classification of High-Dimensional Spectroscopy Data Using Deep
Learning and Data Synthesis [0.5801044612920815]
A novel application of a locally-connected neural network (NN) for the binary classification of spectroscopy data is proposed.
A two-step classification process is presented as an alternative to the binary and one-class classification paradigms.
arXiv Detail & Related papers (2020-03-26T11:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.