The Limits of Transfer Reinforcement Learning with Latent Low-rank Structure
- URL: http://arxiv.org/abs/2410.21601v1
- Date: Mon, 28 Oct 2024 23:12:08 GMT
- Title: The Limits of Transfer Reinforcement Learning with Latent Low-rank Structure
- Authors: Tyler Sam, Yudong Chen, Christina Lee Yu,
- Abstract summary: Many reinforcement learning algorithms are too costly to use in practice due to the large sizes $S, A$ of the problem's state and action space.
We consider the problem of transferring a latent low rank representation when the source and target MDPs have transition kernels.
Our algorithm learns latent representations in each source MDP and then exploits the linear structure to remove the dependence on $S, A $, or $S A$ in the target MDP regret bound.
- Score: 9.631640936820126
- License:
- Abstract: Many reinforcement learning (RL) algorithms are too costly to use in practice due to the large sizes $S, A$ of the problem's state and action space. To resolve this issue, we study transfer RL with latent low rank structure. We consider the problem of transferring a latent low rank representation when the source and target MDPs have transition kernels with Tucker rank $(S , d, A )$, $(S , S , d), (d, S, A )$, or $(d , d , d )$. In each setting, we introduce the transfer-ability coefficient $\alpha$ that measures the difficulty of representational transfer. Our algorithm learns latent representations in each source MDP and then exploits the linear structure to remove the dependence on $S, A $, or $S A$ in the target MDP regret bound. We complement our positive results with information theoretic lower bounds that show our algorithms (excluding the ($d, d, d$) setting) are minimax-optimal with respect to $\alpha$.
Related papers
- Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit
Feedback and Unknown Transition [71.33787410075577]
We study reinforcement learning with linear function approximation, unknown transition, and adversarial losses.
We propose a new algorithm that attains an $widetildeO(dsqrtHS3K + sqrtHSAK)$ regret with high probability.
arXiv Detail & Related papers (2024-03-07T15:03:50Z) - Provably Efficient CVaR RL in Low-rank MDPs [58.58570425202862]
We study risk-sensitive Reinforcement Learning (RL)
We propose a novel Upper Confidence Bound (UCB) bonus-driven algorithm to balance interplay between exploration, exploitation, and representation learning in CVaR RL.
We prove that our algorithm achieves a sample complexity of $epsilon$-optimal CVaR, where $H$ is the length of each episode, $A$ is the capacity of action space, and $d$ is the dimension of representations.
arXiv Detail & Related papers (2023-11-20T17:44:40Z) - Learning Adversarial Low-rank Markov Decision Processes with Unknown
Transition and Full-information Feedback [30.23951525723659]
We study the low-rank MDPs with adversarially changed losses in the full-information feedback setting.
We propose a policy optimization-based algorithm POLO, and we prove that it attains the $widetildeO(Kfrac56Afrac12dln (1+M)/ (1-gamma)2)$ regret guarantee.
arXiv Detail & Related papers (2023-11-14T03:12:43Z) - Adversarial Online Multi-Task Reinforcement Learning [12.421997449847153]
We consider the adversarial online multi-task reinforcement learning setting.
In each of $K$ episodes the learner is given an unknown task taken from a finite set of $M$ unknown finite-horizon MDP models.
The learner's objective is to generalize its regret with respect to the optimal policy for each task.
arXiv Detail & Related papers (2023-01-11T02:18:26Z) - Horizon-Free and Variance-Dependent Reinforcement Learning for Latent
Markov Decision Processes [62.90204655228324]
We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight.
We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver.
arXiv Detail & Related papers (2022-10-20T21:32:01Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Near-optimal Representation Learning for Linear Bandits and Linear RL [41.33483293243257]
We first consider the setting where we play $M$ linear bandits with dimension $d$ concurrently.
These bandits share a common $k$-dimensional linear representation so that $kll d$ and $k ll M$.
We propose a sample-efficient algorithm, MTLR-OFUL, which leverages the shared representation to achieve $tildeO(MsqrtdkT + dsqrtkMT )$ regret.
arXiv Detail & Related papers (2021-02-08T11:11:53Z) - Provably Efficient Reinforcement Learning for Discounted MDPs with
Feature Mapping [99.59319332864129]
In this paper, we study reinforcement learning for discounted Decision (MDP)
We propose a novel algorithm that makes use of the feature mapping and obtains a $tilde O(dsqrtT/ (1-gamma)2)$ regret.
Our upper and lower bound results together suggest that the proposed reinforcement learning algorithm is near-optimal up to a $ (1-gamma)-0.5$ factor.
arXiv Detail & Related papers (2020-06-23T17:08:54Z) - Upper Confidence Primal-Dual Reinforcement Learning for CMDP with
Adversarial Loss [145.54544979467872]
We consider online learning for episodically constrained Markov decision processes (CMDPs)
We propose a new emphupper confidence primal-dual algorithm, which only requires the trajectories sampled from the transition model.
Our analysis incorporates a new high-probability drift analysis of Lagrange multiplier processes into the celebrated regret analysis of upper confidence reinforcement learning.
arXiv Detail & Related papers (2020-03-02T05:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.