Provably Efficient Reinforcement Learning for Discounted MDPs with
Feature Mapping
- URL: http://arxiv.org/abs/2006.13165v4
- Date: Mon, 22 Feb 2021 23:10:12 GMT
- Title: Provably Efficient Reinforcement Learning for Discounted MDPs with
Feature Mapping
- Authors: Dongruo Zhou and Jiafan He and Quanquan Gu
- Abstract summary: In this paper, we study reinforcement learning for discounted Decision (MDP)
We propose a novel algorithm that makes use of the feature mapping and obtains a $tilde O(dsqrtT/ (1-gamma)2)$ regret.
Our upper and lower bound results together suggest that the proposed reinforcement learning algorithm is near-optimal up to a $ (1-gamma)-0.5$ factor.
- Score: 99.59319332864129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern tasks in reinforcement learning have large state and action spaces. To
deal with them efficiently, one often uses predefined feature mapping to
represent states and actions in a low-dimensional space. In this paper, we
study reinforcement learning for discounted Markov Decision Processes (MDPs),
where the transition kernel can be parameterized as a linear function of
certain feature mapping. We propose a novel algorithm that makes use of the
feature mapping and obtains a $\tilde O(d\sqrt{T}/(1-\gamma)^2)$ regret, where
$d$ is the dimension of the feature space, $T$ is the time horizon and $\gamma$
is the discount factor of the MDP. To the best of our knowledge, this is the
first polynomial regret bound without accessing the generative model or making
strong assumptions such as ergodicity of the MDP. By constructing a special
class of MDPs, we also show that for any algorithms, the regret is lower
bounded by $\Omega(d\sqrt{T}/(1-\gamma)^{1.5})$. Our upper and lower bound
results together suggest that the proposed reinforcement learning algorithm is
near-optimal up to a $(1-\gamma)^{-0.5}$ factor.
Related papers
- Provably Efficient Infinite-Horizon Average-Reward Reinforcement Learning with Linear Function Approximation [1.8416014644193066]
We propose an algorithm for learning linear Markov decision processes (MDPs) and linear mixture MDPs under the Bellman optimality condition.
Our algorithm for linear MDPs achieves the best-known regret upper bound of $widetildemathcalO(d3/2mathrmsp(v*)sqrtT)$ over $T$ time steps.
For linear mixture MDPs, our algorithm attains a regret bound of $widetildemathcalO(dcdotmathrm
arXiv Detail & Related papers (2024-09-16T23:13:42Z) - Infinite-Horizon Reinforcement Learning with Multinomial Logistic Function Approximation [3.2703356989962518]
We study model-based reinforcement learning with non-linear function approximation.
We develop a provably efficient discounted value iteration-based algorithm that works for both infinite-horizon average-reward and discounted-reward settings.
arXiv Detail & Related papers (2024-06-19T15:29:14Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Learning Adversarial Low-rank Markov Decision Processes with Unknown
Transition and Full-information Feedback [30.23951525723659]
We study the low-rank MDPs with adversarially changed losses in the full-information feedback setting.
We propose a policy optimization-based algorithm POLO, and we prove that it attains the $widetildeO(Kfrac56Afrac12dln (1+M)/ (1-gamma)2)$ regret guarantee.
arXiv Detail & Related papers (2023-11-14T03:12:43Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function
Approximation [92.3161051419884]
We study the reinforcement learning for finite-horizon episodic Markov decision processes with adversarial reward and full information feedback.
We show that it can achieve $tildeO(dHsqrtT)$ regret, where $H$ is the length of the episode.
We also prove a matching lower bound of $tildeOmega(dHsqrtT)$ up to logarithmic factors.
arXiv Detail & Related papers (2021-02-17T18:54:08Z) - Nearly Minimax Optimal Regret for Learning Infinite-horizon
Average-reward MDPs with Linear Function Approximation [95.80683238546499]
We propose a new algorithm UCRL2-VTR, which can be seen as an extension of the UCRL2 algorithm with linear function approximation.
We show that UCRL2-VTR with Bernstein-type bonus can achieve a regret of $tildeO(dsqrtDT)$, where $d$ is the dimension of the feature mapping.
We also prove a matching lower bound $tildeOmega(dsqrtDT)$, which suggests that the proposed UCRL2-VTR is minimax optimal up to logarithmic factors
arXiv Detail & Related papers (2021-02-15T02:08:39Z) - Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs [99.59319332864129]
We show that UCBVI-$gamma$ achieves an $tildeObig(sqrtSAT/ (1-gamma)1.5big)$ regret, where $S$ is the number of states, $A$ is the number of actions, $gamma$ is the discount factor and $T$ is the number of steps.
In addition, we construct a class of hard MDPs and show that for any algorithm, the expected regret is at least $tildeOmegabig(sqrtSAT/
arXiv Detail & Related papers (2020-10-01T17:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.