論文の概要: CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation
- arxiv url: http://arxiv.org/abs/2410.21611v1
- Date: Mon, 28 Oct 2024 23:28:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:38:47.395189
- Title: CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation
- Title(参考訳): CaloChallenge 2022: 高速カロリメータシミュレーションのためのコミュニティチャレンジ
- Authors: Claudius Krause, Michele Faucci Giannelli, Gregor Kasieczka, Benjamin Nachman, Dalila Salamani, David Shih, Anna Zaborowska, Oz Amram, Kerstin Borras, Matthew R. Buckley, Erik Buhmann, Thorsten Buss, Renato Paulo Da Costa Cardoso, Anthony L. Caterini, Nadezda Chernyavskaya, Federico A. G. Corchia, Jesse C. Cresswell, Sascha Diefenbacher, Etienne Dreyer, Vijay Ekambaram, Engin Eren, Florian Ernst, Luigi Favaro, Matteo Franchini, Frank Gaede, Eilam Gross, Shih-Chieh Hsu, Kristina Jaruskova, Benno Käch, Jayant Kalagnanam, Raghav Kansal, Taewoo Kim, Dmitrii Kobylianskii, Anatolii Korol, William Korcari, Dirk Krücker, Katja Krüger, Marco Letizia, Shu Li, Qibin Liu, Xiulong Liu, Gabriel Loaiza-Ganem, Thandikire Madula, Peter McKeown, Isabell-A. Melzer-Pellmann, Vinicius Mikuni, Nam Nguyen, Ayodele Ore, Sofia Palacios Schweitzer, Ian Pang, Kevin Pedro, Tilman Plehn, Witold Pokorski, Huilin Qu, Piyush Raikwar, John A. Raine, Humberto Reyes-Gonzalez, Lorenzo Rinaldi, Brendan Leigh Ross, Moritz A. W. Scham, Simon Schnake, Chase Shimmin, Eli Shlizerman, Nathalie Soybelman, Mudhakar Srivatsa, Kalliopi Tsolaki, Sofia Vallecorsa, Kyongmin Yeo, Rui Zhang,
- Abstract要約: 我々は,「Fast Calorimeter Simulation Challenge 2022 - the CaloChallenge」の結果を提示する。
本研究では,4カロリーのシャワーデータセットの次元性向上に関する最先端生成モデルについて検討した。
- 参考スコア(独自算出の注目度): 22.42342223406944
- License:
- Abstract: We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, Diffusion models, and models based on Conditional Flow Matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in 1-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space.
- Abstract(参考訳): 我々は,「Fast Calorimeter Simulation Challenge 2022 - the CaloChallenge」の結果を提示する。
数万のボクセルから数万のボクセルまで、次元を増大させる4つのカロリーメータシャワーデータセットの最先端生成モデルについて検討した。
31のサブミッションは、変分オートエンコーダ(VAE)、ジェネレーティブ・アドバイザリー・ネットワーク(GAN)、正規化フロー、拡散モデル、条件付きフローマッチングに基づくモデルなど、現在の一般的な生成アーキテクチャの範囲にまたがっている。
生成したカロリーメータシャワーの品質およびシャワー発生時間とモデルサイズを比較検討した。
可観測物の1次元ヒストグラム, KPD/FPDスコア, バイナリ分類器のAUC, マルチクラス分類器のログポストなど, さまざまな指標を用いて評価を行った。
CaloChallengeの結果は、これまででもっとも完全かつ包括的な、カロリーメーターの高速シミュレーションへの最先端のアプローチに関する調査である。
さらに、本研究は、生成モデルの評価方法に関する重要な問題について、一意に詳細な視点を提供する。
このように、ここで提示される結果は、生成的AIを使用し、大規模なフェーズ空間における高速で忠実なサンプル生成を必要とする他のドメインに適用されるべきである。
関連論文リスト
- One-Step Diffusion Distillation through Score Implicit Matching [74.91234358410281]
本稿では,Score Implicit Matching (SIM) を用いて,事前学習した拡散モデルを単一ステップジェネレータモデルに蒸留する手法を提案する。
SIMはワンステップジェネレータに対して強い経験的性能を示す。
リードトランスに基づく拡散モデルにSIMを適用することにより,テキスト・ツー・イメージ生成のための単一ステップ生成器を蒸留する。
論文 参考訳(メタデータ) (2024-10-22T08:17:20Z) - Calo-VQ: Vector-Quantized Two-Stage Generative Model in Calorimeter Simulation [14.42579802774594]
本稿では,ベクトル量子化変分オートエンコーダ(VQ-VAE)を応用した,カロリー検出器応答の高速シミュレーションのための新しい機械学習手法を提案する。
我々のモデルは2段階生成戦略を採用している: 幾何対応のカロリーメータデータを離散潜在空間に圧縮し、次に列モデルを用いて潜在トークンを学習・生成する。
顕著なことに、我々のモデルはミリ秒以内のカロリーメータシャワーを発生させる。
論文 参考訳(メタデータ) (2024-05-10T17:12:48Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular
Calorimeter Simulation [0.0]
生成する機械学習モデルは、物理解析において従来のシミュレーションチェーンをスピードアップし、拡張することが示されている。
主要な進歩として最近導入されたCaloCloudsモデルがあり、予想される国際大型検出器(ILD)の電磁熱量計のための点雲としてカロリーメータシャワーを生成する。
この記事では、多数の重要な改善が加えられたCaloClouds IIを紹介します。これには、連続的なスコアベースのモデリングが含まれています。これにより、CaloCloudsに匹敵する25ステップのサンプリングが可能になり、単一のCPU上でGeant4よりも6倍のスピードアップを実現します。
論文 参考訳(メタデータ) (2023-09-11T18:00:02Z) - Comparison of Point Cloud and Image-based Models for Calorimeter Fast
Simulation [48.26243807950606]
2つの最先端スコアベースのモデルが、同じカロリーメータのシミュレーションに基づいてトレーニングされ、直接比較される。
生成モデルは、高次元のカロリーメーターデータセットを正確に生成することが示されている新しい生成モデルのクラスである。
論文 参考訳(メタデータ) (2023-07-10T08:20:45Z) - Long Horizon Temperature Scaling [90.03310732189543]
LHTS(Long Horizon Temperature Scaling)は、温度スケールの関節分布をサンプリングするための新しい手法である。
温度依存性のLHTS目標を導出し, 温度範囲のモデルを微調整することで, 制御可能な長地平線温度パラメータで生成可能な単一モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-07T18:59:32Z) - Geometry-aware Autoregressive Models for Calorimeter Shower Simulations [6.01665219244256]
本研究では, 幾何線量に基づく幾何学的自己回帰モデルを構築した。
これは、新しい目に見えないカロリーメーターに一般化できるモデルを構築するための、概念実証の重要なステップである。
このようなモデルは、大型ハドロン衝突型加速器実験において、カロリーメータシミュレーションに使用される数百の生成モデルを置き換えることができる。
論文 参考訳(メタデータ) (2022-12-16T01:45:17Z) - Score-based Generative Models for Calorimeter Shower Simulation [2.0813318162800707]
カロスコア(CaloScore)は、カロリーメータのシャワー発生に応用したコライダー物理のためのスコアベース生成モデルである。
CaloScoreは、コライダー物理学におけるスコアベースの生成モデルの最初の応用であり、全てのデータセットに対して高忠実度カロリー画像を生成することができる。
論文 参考訳(メタデータ) (2022-06-17T18:01:02Z) - CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
Normalizing Flows [0.0]
正規化フローに基づく高速検出器シミュレーションフレームワークであるCaloFlowを紹介する。
本研究は, フローの正規化により, 極めて高い忠実度で多チャンネルのカロリーメータシャワーを再現できることを初めて実証した。
論文 参考訳(メタデータ) (2021-06-09T18:00:02Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
一般化線形潜在変数モデル(GLLVM)は、そのような因子モデルを非ガウス応答に一般化する。
GLLVMのモデルパラメータを推定する現在のアルゴリズムは、集約的な計算を必要とし、大規模なデータセットにスケールしない。
本稿では,GLLVMを高次元データセットに適用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-06T04:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。