Exploring Local Memorization in Diffusion Models via Bright Ending Attention
- URL: http://arxiv.org/abs/2410.21665v1
- Date: Tue, 29 Oct 2024 02:16:01 GMT
- Title: Exploring Local Memorization in Diffusion Models via Bright Ending Attention
- Authors: Chen Chen, Daochang Liu, Mubarak Shah, Chang Xu,
- Abstract summary: We identify and leverage a novel bright ending' (BE) anomaly in diffusion models prone to memorizing training images.
We show that memorized image patches exhibit significantly greater attention to the end token during the final inference step compared to non-memorized patches.
We propose a simple yet effective method to integrate BE and the results of the new localization task into existing frameworks.
- Score: 62.979954692036685
- License:
- Abstract: In this paper, we identify and leverage a novel `bright ending' (BE) anomaly in diffusion models prone to memorizing training images to address a new task: locating localized memorization regions within these models. BE refers to a distinct cross-attention pattern observed in text-to-image generations using diffusion models. Specifically, memorized image patches exhibit significantly greater attention to the end token during the final inference step compared to non-memorized patches. This attention map effectively highlights regions where the generated image replicates training data. Furthermore, driven by our observation that local memorization significantly underperforms in existing tasks of measuring, detecting, and mitigating memorization in diffusion models compared to global memorization, we propose a simple yet effective method to integrate BE and the results of the new localization task into these existing frameworks. This integration effectively improves their performances by narrowing the performance gap caused by local memorization. Our results not only demonstrate the successful execution of the new localization task but also establish new state-of-the-art performance across all existing tasks, underscoring the significance of the BE phenomenon.
Related papers
- Unsupervised Region-Based Image Editing of Denoising Diffusion Models [50.005612464340246]
We propose a method to identify semantic attributes in the latent space of pre-trained diffusion models without any further training.
Our approach facilitates precise semantic discovery and control over local masked areas, eliminating the need for annotations.
arXiv Detail & Related papers (2024-12-17T13:46:12Z) - ResCLIP: Residual Attention for Training-free Dense Vision-language Inference [27.551367463011008]
Cross-correlation of self-attention in CLIP's non-final layers also exhibits localization properties.
We propose the Residual Cross-correlation Self-attention (RCS) module, which leverages the cross-correlation self-attention from intermediate layers to remold the attention in the final block.
The RCS module effectively reorganizes spatial information, unleashing the localization potential within CLIP for dense vision-language inference.
arXiv Detail & Related papers (2024-11-24T14:14:14Z) - Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted [15.162296378581853]
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs.
Concerns arise as research indicates their tendency to memorize and replicate training data.
Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens.
arXiv Detail & Related papers (2024-06-01T15:47:13Z) - Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention [62.671435607043875]
Research indicates that text-to-image diffusion models replicate images from their training data, raising tremendous concerns about potential copyright infringement and privacy risks.
We reveal that during memorization, the cross-attention tends to focus disproportionately on the embeddings of specific tokens.
We introduce an innovative approach to detect and mitigate memorization in diffusion models.
arXiv Detail & Related papers (2024-03-17T01:27:00Z) - Region-aware Distribution Contrast: A Novel Approach to Multi-Task Partially Supervised Learning [50.88504784466931]
Multi-task dense prediction involves semantic segmentation, depth estimation, and surface normal estimation.
Existing solutions typically rely on learning global image representations for global cross-task image matching.
Our proposal involves modeling region-wise representations using Gaussian Distributions.
arXiv Detail & Related papers (2024-03-15T12:41:30Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
We propose a novel method to realize seamless adaptation of pre-trained models for visual place recognition (VPR)
Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method.
Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time.
arXiv Detail & Related papers (2024-02-22T12:55:01Z) - Spatially Consistent Representation Learning [12.120041613482558]
We propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks.
We devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region.
On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements.
arXiv Detail & Related papers (2021-03-10T15:23:45Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.