Exploring Local Memorization in Diffusion Models via Bright Ending Attention
- URL: http://arxiv.org/abs/2410.21665v2
- Date: Fri, 25 Apr 2025 03:20:52 GMT
- Title: Exploring Local Memorization in Diffusion Models via Bright Ending Attention
- Authors: Chen Chen, Daochang Liu, Mubarak Shah, Chang Xu,
- Abstract summary: "bright ending" (BE) anomaly in text-to-image diffusion models prone to memorizing training images.<n>We propose a simple yet effective method to integrate BE into existing frameworks.
- Score: 62.979954692036685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image diffusion models have achieved unprecedented proficiency in generating realistic images. However, their inherent tendency to memorize and replicate training data during inference raises significant concerns, including potential copyright infringement. In response, various methods have been proposed to evaluate, detect, and mitigate memorization. Our analysis reveals that existing approaches significantly underperform in handling local memorization, where only specific image regions are memorized, compared to global memorization, where the entire image is replicated. Also, they cannot locate the local memorization regions, making it hard to investigate locally. To address these, we identify a novel "bright ending" (BE) anomaly in diffusion models prone to memorizing training images. BE refers to a distinct cross-attention pattern observed in text-to-image diffusion models, where memorized image patches exhibit significantly greater attention to the final text token during the last inference step than non-memorized patches. This pattern highlights regions where the generated image replicates training data and enables efficient localization of memorized regions. Equipped with this, we propose a simple yet effective method to integrate BE into existing frameworks, significantly improving their performance by narrowing the performance gap caused by local memorization. Our results not only validate the successful execution of the new localization task but also establish new state-of-the-art performance across all existing tasks, underscoring the significance of the BE phenomenon.
Related papers
- From Missing Pieces to Masterpieces: Image Completion with Context-Adaptive Diffusion [98.31811240195324]
ConFill is a novel framework that reduces discrepancies between generated and original images at each diffusion step.
It outperforms current methods, setting a new benchmark in image completion.
arXiv Detail & Related papers (2025-04-19T13:40:46Z) - Focus on Local: Finding Reliable Discriminative Regions for Visual Place Recognition [26.27331683733832]
Visual Place Recognition (VPR) is aimed at predicting the location of a query image by referencing a database of geotagged images.
Existing methods lack precisely modeling and full exploitation of discriminative regions.
We propose the Focus on Local (FoL) approach to stimulate the performance of image retrieval and re-ranking in VPR simultaneously.
arXiv Detail & Related papers (2025-04-14T05:04:51Z) - Unsupervised Region-Based Image Editing of Denoising Diffusion Models [50.005612464340246]
We propose a method to identify semantic attributes in the latent space of pre-trained diffusion models without any further training.
Our approach facilitates precise semantic discovery and control over local masked areas, eliminating the need for annotations.
arXiv Detail & Related papers (2024-12-17T13:46:12Z) - ResCLIP: Residual Attention for Training-free Dense Vision-language Inference [27.551367463011008]
Cross-correlation of self-attention in CLIP's non-final layers also exhibits localization properties.
We propose the Residual Cross-correlation Self-attention (RCS) module, which leverages the cross-correlation self-attention from intermediate layers to remold the attention in the final block.
The RCS module effectively reorganizes spatial information, unleashing the localization potential within CLIP for dense vision-language inference.
arXiv Detail & Related papers (2024-11-24T14:14:14Z) - Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - Unveiling Structural Memorization: Structural Membership Inference Attack for Text-to-Image Diffusion Models [17.946671657675022]
Member Inference Attack (MIA) is proposed to serve as a tool for privacy protection.
We propose a simple yet effective MIA method tailored for text-to-image diffusion models.
Our approach not only achieves state-of-the-art performance but also demonstrates remarkable robustness against various distortions.
arXiv Detail & Related papers (2024-07-18T08:07:28Z) - Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted [15.162296378581853]
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs.
Concerns arise as research indicates their tendency to memorize and replicate training data.
Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens.
arXiv Detail & Related papers (2024-06-01T15:47:13Z) - Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention [62.671435607043875]
Research indicates that text-to-image diffusion models replicate images from their training data, raising tremendous concerns about potential copyright infringement and privacy risks.
We reveal that during memorization, the cross-attention tends to focus disproportionately on the embeddings of specific tokens.
We introduce an innovative approach to detect and mitigate memorization in diffusion models.
arXiv Detail & Related papers (2024-03-17T01:27:00Z) - Region-aware Distribution Contrast: A Novel Approach to Multi-Task Partially Supervised Learning [50.88504784466931]
Multi-task dense prediction involves semantic segmentation, depth estimation, and surface normal estimation.
Existing solutions typically rely on learning global image representations for global cross-task image matching.
Our proposal involves modeling region-wise representations using Gaussian Distributions.
arXiv Detail & Related papers (2024-03-15T12:41:30Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
We propose a novel method to realize seamless adaptation of pre-trained models for visual place recognition (VPR)
Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method.
Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time.
arXiv Detail & Related papers (2024-02-22T12:55:01Z) - LIME: Localized Image Editing via Attention Regularization in Diffusion
Models [74.3811832586391]
This paper introduces LIME for localized image editing in diffusion models that do not require user-specified regions of interest (RoI) or additional text input.
Our method employs features from pre-trained methods and a simple clustering technique to obtain precise semantic segmentation maps.
We propose a novel cross-attention regularization technique that penalizes unrelated cross-attention scores in the RoI during the denoising steps, ensuring localized edits.
arXiv Detail & Related papers (2023-12-14T18:59:59Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
Text-to-image diffusion models have shown great potential for benefiting image recognition.
Although promising, there has been inadequate exploration dedicated to unsupervised learning on diffusion-generated images.
We introduce customized solutions by fully exploiting the aforementioned free attention masks.
arXiv Detail & Related papers (2023-08-13T10:07:46Z) - Spatially Consistent Representation Learning [12.120041613482558]
We propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks.
We devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region.
On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements.
arXiv Detail & Related papers (2021-03-10T15:23:45Z) - HM4: Hidden Markov Model with Memory Management for Visual Place
Recognition [54.051025148533554]
We develop a Hidden Markov Model approach for visual place recognition in autonomous driving.
Our algorithm, dubbed HM$4$, exploits temporal look-ahead to transfer promising candidate images between passive storage and active memory.
We show that this allows constant time and space inference for a fixed coverage area.
arXiv Detail & Related papers (2020-11-01T08:49:24Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.