論文の概要: Impact of Code Transformation on Detection of Smart Contract Vulnerabilities
- arxiv url: http://arxiv.org/abs/2410.21685v1
- Date: Tue, 29 Oct 2024 03:08:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:49.196532
- Title: Impact of Code Transformation on Detection of Smart Contract Vulnerabilities
- Title(参考訳): コード変換がスマートコントラクト脆弱性の検出に及ぼす影響
- Authors: Cuong Tran Manh, Hieu Dinh Vo,
- Abstract要約: 本稿では,スマートコントラクト脆弱性データセットの量と品質を改善する方法を提案する。
このアプローチは、セマンティックな意味を変えることなくソースコード構造を変更するテクニックである、セマンティックな保存コード変換を中心に展開されている。
改善された結果によると、新たに生成された脆弱性の多くはツールをバイパスでき、偽報告率は最大100%になる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: While smart contracts are foundational elements of blockchain applications, their inherent susceptibility to security vulnerabilities poses a significant challenge. Existing training datasets employed for vulnerability detection tools may be limited, potentially compromising their efficacy. This paper presents a method for improving the quantity and quality of smart contract vulnerability datasets and evaluates current detection methods. The approach centers around semantic-preserving code transformation, a technique that modifies the source code structure without altering its semantic meaning. The transformed code snippets are inserted into all potential locations within benign smart contract code, creating new vulnerable contract versions. This method aims to generate a wider variety of vulnerable codes, including those that can bypass detection by current analysis tools. The paper experiments evaluate the method's effectiveness using tools like Slither, Mythril, and CrossFuzz, focusing on metrics like the number of generated vulnerable samples and the false negative rate in detecting these vulnerabilities. The improved results show that many newly created vulnerabilities can bypass tools and the false reporting rate goes up to 100% and increases dataset size minimum by 2.5X.
- Abstract(参考訳): スマートコントラクトはブロックチェーンアプリケーションの基本的な要素ですが、セキュリティ脆弱性に対する固有の感受性は、大きな課題になります。
脆弱性検出ツールに使用されている既存のトレーニングデータセットは制限され、その有効性を損なう可能性がある。
本稿では,スマートコントラクト脆弱性データセットの量と品質を改善し,現在の検出方法を評価する。
このアプローチは、セマンティックな意味を変えることなくソースコード構造を変更するテクニックである、セマンティックな保存コード変換を中心に展開されている。
変換されたコードスニペットは、良質なスマートコントラクトコード内のすべての潜在的な場所に挿入され、新しい脆弱なコントラクトバージョンを生成する。
この方法は、現在の分析ツールによる検出をバイパスできるコードを含む、より幅広い種類の脆弱なコードを生成することを目的としている。
実験では、Slither、Mythril、CrossFuzzといったツールを用いて、生成された脆弱性サンプルの数や、これらの脆弱性を検出する際の偽陰性率などの指標に焦点を当て、手法の有効性を評価した。
改善された結果によると、新たに生成された脆弱性の多くはツールをバイパスでき、偽報告率は100%まで増加し、データセットサイズを2.5倍に向上する。
関連論文リスト
- HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - LLM-Enhanced Static Analysis for Precise Identification of Vulnerable OSS Versions [12.706661324384319]
オープンソースソフトウェア(OSS)は、そのコラボレーティブな開発モデルとコスト効果の性質から、人気が高まっている。
開発プロジェクトにおける特定のソフトウェアバージョンの採用は、これらのバージョンが脆弱性をもたらす場合にセキュリティリスクをもたらす可能性がある。
脆弱性のあるバージョンを識別する現在の方法は、通常、事前に定義されたルールで静的解析を使用して、脆弱性パッチに関わるコードを分析してトレースする。
本稿では,C/C++で記述されたOSSの脆弱なバージョンを特定するために,Vercationを提案する。
論文 参考訳(メタデータ) (2024-08-14T06:43:06Z) - Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
ソースコードの脆弱性検出は、潜在的な攻撃からソフトウェアシステムを保護するための固有の脆弱性を特定することを目的としている。
多くの先行研究は、様々な脆弱性の特徴を見落とし、問題をバイナリ(0-1)分類タスクに単純化した。
FGVulDetは、さまざまな脆弱性タイプの特徴を識別するために複数の分類器を使用し、その出力を組み合わせて特定の脆弱性タイプを特定する。
FGVulDetはGitHubの大規模なデータセットでトレーニングされており、5種類の脆弱性を含んでいる。
論文 参考訳(メタデータ) (2024-04-15T09:10:52Z) - DeVAIC: A Tool for Security Assessment of AI-generated Code [5.383910843560784]
DeVAIC (Detection of Vulnerabilities in AI Generated Code)は、AI生成のPythonコードのセキュリティを評価するツールである。
論文 参考訳(メタデータ) (2024-04-11T08:27:23Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - DCDetector: An IoT terminal vulnerability mining system based on
distributed deep ensemble learning under source code representation [2.561778620560749]
この研究の目的は、C/C++のような高レベルの言語のソースコードの脆弱性をインテリジェントに検出することである。
これにより、ソースコードのセンシティブな文関連スライスをコード表現し、分散深層学習モデルの設計により脆弱性を検出することができる。
実験により,従来の静的解析の偽陽性率を低減し,機械学習の性能と精度を向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-29T14:19:14Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
ソースコードのセキュリティ脆弱性の共通カテゴリのいくつかを効率的に検出することを学ぶディープラーニングモデルを提案する。
モデルは、学習可能なパラメータの少ないコードセマンティクスの正確な理解を構築します。
提案したAIは、ベンチマークされたNIST SARDデータセットから特定のCWEに対して98.40%のF1スコアを達成する。
論文 参考訳(メタデータ) (2021-04-19T11:50:36Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。