Enhancing Financial Question Answering with a Multi-Agent Reflection Framework
- URL: http://arxiv.org/abs/2410.21741v1
- Date: Tue, 29 Oct 2024 04:58:07 GMT
- Title: Enhancing Financial Question Answering with a Multi-Agent Reflection Framework
- Authors: Sorouralsadat Fatemi, Yuheng Hu,
- Abstract summary: We propose a multi-agent framework incorporating a critic agent that reflects on the reasoning steps and final answers for each question.
Our results indicate that this framework significantly improves performance compared to single-agent reasoning.
Our framework performs on par with, and in some cases surpasses, larger single-agent LLMs such as LLaMA3.1-405B and GPT-4o-mini.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Large Language Models (LLMs) have shown impressive capabilities in numerous Natural Language Processing (NLP) tasks, they still struggle with financial question answering (QA), particularly when numerical reasoning is required. Recently, LLM-based multi-agent frameworks have demonstrated remarkable effectiveness in multi-step reasoning, which is crucial for financial QA tasks as it involves extracting relevant information from tables and text and then performing numerical reasoning on the extracted data to infer answers. In this study, we propose a multi-agent framework incorporating a critic agent that reflects on the reasoning steps and final answers for each question. Additionally, we enhance our system by adding multiple critic agents, each focusing on a specific aspect of the answer. Our results indicate that this framework significantly improves performance compared to single-agent reasoning, with an average performance increase of 15% for the LLaMA3-8B model and 5% for the LLaMA3-70B model. Furthermore, our framework performs on par with, and in some cases surpasses, larger single-agent LLMs such as LLaMA3.1-405B and GPT-4o-mini, though it falls slightly short compared to Claude-3.5 Sonnet. Overall, our framework presents an effective solution to enhance open-source LLMs for financial QA tasks, offering a cost-effective alternative to larger models like Claude-3.5 Sonnet.
Related papers
- Large Reasoning Models in Agent Scenarios: Exploring the Necessity of Reasoning Capabilities [74.35956310688164]
We propose the LaRMA framework, encompassing nine tasks across Tool Usage, Plan Design, and Problem Solving.
Our findings address four research questions: LRMs surpass LLMs in reasoning-intensive tasks like Plan Design, leveraging iterative reflection for superior outcomes.
LRMs' enhanced reasoning incurs higher computational costs, prolonged processing, and behavioral challenges, including overthinking and fact-ignoring tendencies.
arXiv Detail & Related papers (2025-03-14T04:34:31Z) - Seeing and Reasoning with Confidence: Supercharging Multimodal LLMs with an Uncertainty-Aware Agentic Framework [23.42251949130555]
Multimodal large language models (MLLMs) show promise in tasks like visual question answering (VQA)
Recent works adapt agentic frameworks or chain-of-thought (CoT) reasoning to improve performance.
We propose Seeing and Reasoning with Confidence (SRICE), a training-free multimodal reasoning framework.
arXiv Detail & Related papers (2025-03-11T11:18:53Z) - Efficient Multi-Agent Collaboration with Tool Use for Online Planning in Complex Table Question Answering [16.790216473975146]
Complex table question answering (TQA) aims to answer questions that require complex reasoning, such as multi-step or multi-category reasoning.
Previous approaches demonstrated notable performance by leveraging either closed-source large language models (LLMs) or fine-tuned open-weight LLMs.
We propose Multi-Agent Collaboration with Tool use (MACT), a framework that requires neither closed-source models nor fine-tuning.
arXiv Detail & Related papers (2024-12-28T13:13:33Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs [20.793892860721712]
We introduce MetaLLM, a framework that dynamically and intelligently routes each query to the optimal large language models (LLMs)
By framing the selection problem as a multi-armed bandit, MetaLLM balances prediction accuracy and cost efficiency under uncertainty.
Our experiments, conducted on popular LLM platforms such as OpenAI and Together AI, showcase MetaLLM's efficacy in real-world scenarios.
arXiv Detail & Related papers (2024-07-15T15:45:07Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - An Empirical Study of LLaMA3 Quantization: From LLMs to MLLMs [54.91212829143966]
This study explores LLaMA3's capabilities when quantized to low bit-width.
We evaluate 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets.
Our experimental results indicate that LLaMA3 still suffers non-negligent degradation in linguistic and visual contexts.
arXiv Detail & Related papers (2024-04-22T10:03:03Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing.
As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework.
This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - Large Language Model Cascades with Mixture of Thoughts Representations
for Cost-efficient Reasoning [19.472937476936636]
Large language models (LLMs) have exhibited remarkable performance in a variety of tasks, but this strong performance often comes with the high expense of using paid API services.
In this paper, we are motivated to study building an LLM cascade to save the cost of using LLMs.
Our proposed cascades can achieve performance comparable to using solely the stronger LLM but require only 40% of its cost.
arXiv Detail & Related papers (2023-10-04T18:21:17Z) - Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot
Relation Extractors [11.28397947587596]
Fine-tuning large language models (LLMs) on large-scale instruction-following datasets substantially improves their performance on a wide range of NLP tasks.
However, even advanced instruction-tuned LLMs still fail to outperform small LMs on relation extraction (RE)
We propose QA4RE, a framework that aligns RE with question answering (QA), a predominant task in instruction-tuning datasets.
arXiv Detail & Related papers (2023-05-18T17:48:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.