論文の概要: MotionGPT-2: A General-Purpose Motion-Language Model for Motion Generation and Understanding
- arxiv url: http://arxiv.org/abs/2410.21747v1
- Date: Tue, 29 Oct 2024 05:25:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:40:33.940467
- Title: MotionGPT-2: A General-Purpose Motion-Language Model for Motion Generation and Understanding
- Title(参考訳): MotionGPT-2:モーション生成と理解のための汎用モーションランゲージモデル
- Authors: Yuan Wang, Di Huang, Yaqi Zhang, Wanli Ouyang, Jile Jiao, Xuetao Feng, Yan Zhou, Pengfei Wan, Shixiang Tang, Dan Xu,
- Abstract要約: MotionGPT-2は、MLMLM(Large Motion-Language Model)である。
LLM(Large Language Models)によるマルチモーダル制御をサポートしている。
難易度の高い3次元全体運動生成タスクに高い適応性を持つ。
- 参考スコア(独自算出の注目度): 76.30210465222218
- License:
- Abstract: Generating lifelike human motions from descriptive texts has experienced remarkable research focus in the recent years, propelled by the emerging requirements of digital humans.Despite impressive advances, existing approaches are often constrained by limited control modalities, task specificity, and focus solely on body motion representations.In this paper, we present MotionGPT-2, a unified Large Motion-Language Model (LMLM) that addresses these limitations. MotionGPT-2 accommodates multiple motion-relevant tasks and supporting multimodal control conditions through pre-trained Large Language Models (LLMs). It quantizes multimodal inputs-such as text and single-frame poses-into discrete, LLM-interpretable tokens, seamlessly integrating them into the LLM's vocabulary. These tokens are then organized into unified prompts, guiding the LLM to generate motion outputs through a pretraining-then-finetuning paradigm. We also show that the proposed MotionGPT-2 is highly adaptable to the challenging 3D holistic motion generation task, enabled by the innovative motion discretization framework, Part-Aware VQVAE, which ensures fine-grained representations of body and hand movements. Extensive experiments and visualizations validate the effectiveness of our method, demonstrating the adaptability of MotionGPT-2 across motion generation, motion captioning, and generalized motion completion tasks.
- Abstract(参考訳): 説明文から生活のような人間の動作を生成することは,近年,デジタル人間の要求が強まる中で,目覚ましい研究課題を経験してきた。しかし,既存のアプローチは,制限された制御モダリティやタスク特異性によって制約されることが多く,身体の動き表現のみに制約されることが多い。本稿では,これらの制約に対処する統合された大動き言語モデル(LMLM)であるMotionGPT-2を提案する。
MotionGPT-2は複数の動作関連タスクに対応し、事前訓練されたLarge Language Models (LLMs) を通じてマルチモーダル制御条件をサポートする。
テキストや単一フレームのポーズのようなマルチモーダル入力を、離散的なLLM解釈可能なトークンに量子化し、それらをLLMの語彙にシームレスに統合する。
これらのトークンは統合されたプロンプトに編成され、LLMが事前訓練されたプロセスファインタニングパラダイムを通じて動作出力を生成するように誘導される。
また,提案したMotionGPT-2は,身体と手の動きのきめ細かい表現を確実にする,革新的な動き離散化フレームワークPart-Aware VQVAEによって実現された,難易度な3次元全体運動生成タスクに対して高い適応性を示す。
本手法の有効性を検証し, 動作生成, モーションキャプション, 一般化された動作完了タスクにおけるMotionGPT-2の適応性を検証した。
関連論文リスト
- MotionCraft: Crafting Whole-Body Motion with Plug-and-Play Multimodal Controls [30.487510829107908]
プラグ・アンド・プレイ・マルチモーダル制御による全身動作を実現する統合拡散変換器であるMotionCraftを提案する。
我々のフレームワークは、テキスト・ツー・モーション・セマンティック・トレーニングの第1段階から始まる粗大な訓練戦略を採用している。
本稿では,SMPL-Xフォーマットを統一したマルチモーダル全体モーション生成ベンチマークMC-Benchを紹介する。
論文 参考訳(メタデータ) (2024-07-30T18:57:06Z) - Motion-Agent: A Conversational Framework for Human Motion Generation with LLMs [67.59291068131438]
Motion-Agentは、一般的な人間の動きの生成、編集、理解のために設計された会話フレームワークである。
Motion-Agentはオープンソースの事前学習言語モデルを使用して、モーションとテキストのギャップを埋める生成エージェントであるMotionLLMを開発した。
論文 参考訳(メタデータ) (2024-05-27T09:57:51Z) - FreeMotion: A Unified Framework for Number-free Text-to-Motion Synthesis [65.85686550683806]
そこで本稿では, 条件付き動作分布を用いて, 単独動作と多人数動作を統一する動き生成手法を提案する。
筆者らの枠組みに基づいて,現在ある一対一動作空間制御手法をシームレスに統合し,多対一動作の正確な制御を実現する。
論文 参考訳(メタデータ) (2024-05-24T17:57:57Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
本稿では,マルチモーダル入力を管理する新しい手法であるScene and Motion Conditional Diffusion (SMCD)を紹介する。
SMCDは、認識されたモーションコンディショニングモジュールを組み込み、シーン条件を統合するための様々なアプローチを調査する。
我々のデザインは映像の品質、動きの精度、セマンティック・コヒーレンスを大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-15T10:36:24Z) - MoConVQ: Unified Physics-Based Motion Control via Scalable Discrete
Representations [25.630268570049708]
MoConVQは、スケーラブルな離散表現を活用する物理ベースのモーションコントロールのための新しい統合フレームワークである。
提案手法は,数十時間の動作例にまたがる大規模非構造データセットから,効果的に動作埋め込みを学習する。
論文 参考訳(メタデータ) (2023-10-16T09:09:02Z) - DiverseMotion: Towards Diverse Human Motion Generation via Discrete
Diffusion [70.33381660741861]
テキスト記述に基づく高品質な人間の動作を合成するための新しいアプローチであるDiverseMotionを提案する。
我々のDiverseMotionは、最先端のモーション品質と競争力の多様性を達成できることを示す。
論文 参考訳(メタデータ) (2023-09-04T05:43:48Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
テキスト・ツー・モーション生成のための優先中心運動離散拡散モデル(M2DM)を提案する。
M2DMは、コード崩壊に対処するために、グローバルな自己注意機構と正規化用語を組み込んでいる。
また、各動きトークンの重要度から決定される革新的なノイズスケジュールを用いた動き離散拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-08-28T10:40:16Z) - MotionGPT: Human Motion as a Foreign Language [47.21648303282788]
人間の動きは人間の言語に似た意味的な結合を示し、しばしば身体言語の一種として認識される。
大規模モーションモデルで言語データを融合することにより、動き言語事前学習は、動きに関連したタスクのパフォーマンスを向上させることができる。
我々は,複数の動作関連タスクを処理するために,統一的で汎用的でユーザフレンドリな動作言語モデルであるMotionGPTを提案する。
論文 参考訳(メタデータ) (2023-06-26T15:53:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。