Photonic Quantum Receiver Attaining the Helstrom Bound
- URL: http://arxiv.org/abs/2410.21800v1
- Date: Tue, 29 Oct 2024 07:08:39 GMT
- Title: Photonic Quantum Receiver Attaining the Helstrom Bound
- Authors: Aakash Warke, Janis Nötzel, Kan Takase, Warit Asavanant, Hironari Nagayoshi, Kosuke Fukui, Shuntaro Takeda, Akira Furusawa, Peter van Loock,
- Abstract summary: We propose an efficient decomposition scheme for a quantum receiver that attains the Helstrom bound in the low-photon regime for discriminating binary coherent states.
We account for realistic conditions by examining the impact of photon loss and imperfect photon detection, including the presence of dark counts.
Our scheme motivates testing quantum advantages with cubic-phase gates and designing photonic quantum computers to optimize symbol-by-symbol measurements in optical communication.
- Score: 0.9674145073701151
- License:
- Abstract: We propose an efficient decomposition scheme for a quantum receiver that attains the Helstrom bound in the low-photon regime for discriminating binary coherent states. Our method, which avoids feedback as used in Dolinar's case, breaks down nonlinear operations into basic gates used in continuous-variable quantum computation. We account for realistic conditions by examining the impact of photon loss and imperfect photon detection, including the presence of dark counts, while presenting squeezing as a technique to mitigate these noise sources and maintain the advantage over SQL. Our scheme motivates testing quantum advantages with cubic-phase gates and designing photonic quantum computers to optimize symbol-by-symbol measurements in optical communication.
Related papers
- Deterministic generation of concatenated graph codes from quantum emitters [0.0]
Concatenation of a fault-tolerant construction with a code able to efficiently correct loss is a promising approach to achieve this.
We propose schemes for generatingd graph codes using multi-photon emission from two quantum emitters or a single quantum emitter coupled to a memory.
We show that these schemes enable fault-tolerant fusion-based quantum regimes in practical computation with high photon loss and standard fusion gates.
arXiv Detail & Related papers (2024-06-24T14:44:23Z) - A Hybrid Approach to Mitigate Errors in Linear Photonic Bell-State Measurement for Quantum Interconnects [0.0]
We introduce a novel hybrid detection scheme for Bell-state measurement.
We derive explicit fidelities for quantum teleportation and entanglement swapping processes.
This work provides a new tool for linear optics schemes, with applications to quantum state engineering and quantum interconnects.
arXiv Detail & Related papers (2024-06-14T18:00:00Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Implementation of photon partial distinguishability in a quantum optical
circuit simulation [0.0]
Photonic quantum states are represented by wavepackets which contain information on their time and frequency distributions.
In order to account for the partial photon distinguishability, we expand the number of degrees of freedom associated with the circuit operation.
This strategy allows to define delay operations in the same footing as the linear optical elements.
arXiv Detail & Related papers (2022-08-05T16:01:39Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Statistical limits for quantum networks with semiconductor entangled
photon sources [1.44854099261305]
We explore the statistical limits for entanglement swapping with sources of polarization-entangled photons from the commonly used biexciton-exciton cascade.
We stress the necessity of tuning the exciton fine structure, and explain why the often observed time evolution of photonic entanglement in quantum dots is not applicable for large quantum networks.
arXiv Detail & Related papers (2021-09-14T14:57:50Z) - All-optical Quantum State Engineering for Rotation-symmetric Bosonic
States [0.0]
We propose and analyze a method to generate a variety of non-Gaussian states using coherent photon subtraction.
Our method can be readily implemented with current quantum photonic technologies.
arXiv Detail & Related papers (2021-05-23T22:43:23Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.