Statistical limits for quantum networks with semiconductor entangled
photon sources
- URL: http://arxiv.org/abs/2109.06742v2
- Date: Fri, 10 Jun 2022 16:12:22 GMT
- Title: Statistical limits for quantum networks with semiconductor entangled
photon sources
- Authors: Jingzhong Yang, Michael Zopf, Pengji Li, Nand Lal Sharma, Weijie Nie,
Frederik Benthin, Tom Fandrich, Eddy Patrick Rugeramigabo, Caspar Hopfmann,
Robert Keil, Oliver G. Schmidt, Fei Ding
- Abstract summary: We explore the statistical limits for entanglement swapping with sources of polarization-entangled photons from the commonly used biexciton-exciton cascade.
We stress the necessity of tuning the exciton fine structure, and explain why the often observed time evolution of photonic entanglement in quantum dots is not applicable for large quantum networks.
- Score: 1.44854099261305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semiconductor quantum dots are promising building blocks for quantum
communication applications. Although deterministic, efficient, and coherent
emission of entangled photons has been realized, implementing a practical
quantum repeater remains outstanding. Here we explore the statistical limits
for entanglement swapping with sources of polarization-entangled photons from
the commonly used biexciton-exciton cascade. We stress the necessity of tuning
the exciton fine structure, and explain why the often observed time evolution
of photonic entanglement in quantum dots is not applicable for large quantum
networks. We identify the critical, statistically distributed device parameters
for entanglement swapping based on two sources. A numerical model for
benchmarking the consequences of device fabrication, dynamic tuning techniques,
and statistical effects is developed, in order to bring the realization of
semiconductor-based quantum networks one step closer to reality.
Related papers
- Tailoring fusion-based photonic quantum computing schemes to quantum emitters [0.0]
Fusion-based quantum computation is a promising quantum computing model where small-sized photonic resource states are simultaneously entangled and measured by fusion gates.
Here, we propose fusion-based architectures tailored to the capabilities and noise models in quantum emitters.
We show that high tolerance to dominant physical error mechanisms can be achieved, with fault-tolerance thresholds of 8% for photon loss, 4% for photon distinguishability between emitters, and spin noise thresholds well above memory-induced errors.
arXiv Detail & Related papers (2024-10-09T11:31:49Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Controlling the Photon Number Coherence of Solid-state Quantum Light
Sources for Quantum Cryptography [0.0]
Quantum communication networks rely on quantum cryptographic protocols including quantum key distribution (QKD) using single photons.
A critical element regarding the security of QKD protocols is the photon number coherence (PNC)
We exploit two-photon excitation of a quantum dot combined with a stimulation pulse to generate on-demand single photons with high purity and indistinguishability.
arXiv Detail & Related papers (2023-05-31T16:46:00Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - On-demand source of dual-rail photon pairs based on chiral interaction
in a nanophotonic waveguide [2.3776015607838747]
Entanglement is the fuel of advanced quantum technology.
In photonics, entanglement has traditionally been generated probabilistically.
We propose and experimentally realize an on-demand source of dual-rail photon pairs.
arXiv Detail & Related papers (2021-09-08T09:39:55Z) - Quantum dots as potential sources of strongly entangled photons for
quantum networks [0.0]
A network of quantum repeaters containing multiple sources of entangled photons would allow to overcome a natural limit for transmission distance.
Semiconductor quantum dots excel in this context as sub-poissonian sources of polarization entangled photon pairs.
We present the state-of-the-art set by GaAs based quantum dots and use them as a benchmark to discuss the challenges to overcome towards the realization of practical quantum networks.
arXiv Detail & Related papers (2020-11-25T13:39:46Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.