Gnothi Seauton: Empowering Faithful Self-Interpretability in Black-Box Models
- URL: http://arxiv.org/abs/2410.21815v1
- Date: Tue, 29 Oct 2024 07:35:33 GMT
- Title: Gnothi Seauton: Empowering Faithful Self-Interpretability in Black-Box Models
- Authors: Shaobo Wang, Hongxuan Tang, Mingyang Wang, Hongrui Zhang, Xuyang Liu, Weiya Li, Xuming Hu, Linfeng Zhang,
- Abstract summary: Self-interpretable models, such as concept-based networks, offer insights by connecting decisions to human-understandable concepts.
Post-hoc methods like Shapley values, while theoretically robust, are computationally expensive and resource-intensive.
We propose a novel method that combines their strengths, providing theoretically guaranteed self-interpretability for black-box models.
- Score: 21.698201509643624
- License:
- Abstract: The debate between self-interpretable models and post-hoc explanations for black-box models is central to Explainable AI (XAI). Self-interpretable models, such as concept-based networks, offer insights by connecting decisions to human-understandable concepts but often struggle with performance and scalability. Conversely, post-hoc methods like Shapley values, while theoretically robust, are computationally expensive and resource-intensive. To bridge the gap between these two lines of research, we propose a novel method that combines their strengths, providing theoretically guaranteed self-interpretability for black-box models without compromising prediction accuracy. Specifically, we introduce a parameter-efficient pipeline, *AutoGnothi*, which integrates a small side network into the black-box model, allowing it to generate Shapley value explanations without changing the original network parameters. This side-tuning approach significantly reduces memory, training, and inference costs, outperforming traditional parameter-efficient methods, where full fine-tuning serves as the optimal baseline. *AutoGnothi* enables the black-box model to predict and explain its predictions with minimal overhead. Extensive experiments show that *AutoGnothi* offers accurate explanations for both vision and language tasks, delivering superior computational efficiency with comparable interpretability.
Related papers
- DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation [21.172795461188578]
We propose DISCRET, a self-interpretable ITE framework that synthesizes faithful, rule-based explanations for each sample.
A key insight behind DISCRET is that explanations can serve dually as database queries to identify similar subgroups of samples.
We provide a novel RL algorithm to efficiently synthesize these explanations from a large search space.
arXiv Detail & Related papers (2024-06-02T04:01:08Z) - Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable? [8.391254800873599]
We introduce a method to perform concept-based interventions on pretrained neural networks, which are not interpretable by design.
We formalise the notion of intervenability as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes.
arXiv Detail & Related papers (2024-01-24T16:02:14Z) - Black-Box Tuning of Vision-Language Models with Effective Gradient
Approximation [71.21346469382821]
We introduce collaborative black-box tuning (CBBT) for both textual prompt optimization and output feature adaptation for black-box models.
CBBT is extensively evaluated on eleven downstream benchmarks and achieves remarkable improvements compared to existing black-box VL adaptation methods.
arXiv Detail & Related papers (2023-12-26T06:31:28Z) - Discriminative Feature Attributions: Bridging Post Hoc Explainability
and Inherent Interpretability [29.459228981179674]
Post hoc explanations incorrectly attribute high importance to features that are unimportant or non-discriminative for the underlying task.
Inherently interpretable models, on the other hand, circumvent these issues by explicitly encoding explanations into model architecture.
We propose Distractor Erasure Tuning (DiET), a method that adapts black-box models to be robust to distractor erasure.
arXiv Detail & Related papers (2023-07-27T17:06:02Z) - Deep Grey-Box Modeling With Adaptive Data-Driven Models Toward
Trustworthy Estimation of Theory-Driven Models [88.63781315038824]
We present a framework that enables us to analyze a regularizer's behavior empirically with a slight change in the neural net's architecture and the training objective.
arXiv Detail & Related papers (2022-10-24T10:42:26Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - How to Robustify Black-Box ML Models? A Zeroth-Order Optimization
Perspective [74.47093382436823]
We address the problem of black-box defense: How to robustify a black-box model using just input queries and output feedback?
We propose a general notion of defensive operation that can be applied to black-box models, and design it through the lens of denoised smoothing (DS)
We empirically show that ZO-AE-DS can achieve improved accuracy, certified robustness, and query complexity over existing baselines.
arXiv Detail & Related papers (2022-03-27T03:23:32Z) - Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern
Classification [0.0]
We propose an LTCN-based model for interpretable pattern classification of structured data.
Our method brings its own mechanism for providing explanations by quantifying the relevance of each feature in the decision process.
Our interpretable model obtains competitive performance when compared to the state-of-the-art white and black boxes.
arXiv Detail & Related papers (2021-07-07T18:14:50Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.